Background: Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i) a host gut cDNA library and (ii) a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing.
For most animals, lignocellulose is a nutritionally poor food source that is highly resistant to enteric degradation. Termites, however, have the unique ability to digest lignocellulose with high effi ciency, often using it as a sole food source. Another interesting aspect of termite biology is their symbiotic associations with prokaryotic and eukaryotic gut symbionts. Termite symbionts contribute to lignocellulose digestion effi ciency, but by no means are they responsible for 100% of lignocellulose digestion in the termite gut. The termite digestome can be defi ned as the pool of genes, both termite and symbiont, that contribute to lignocellulose depolymerization and digestion, as well as simple sugar fermentation, nutrient transport, and nutrient assimilation. A central goal of termite digestomics research is to defi ne/understand the relative contributions of termite and symbiont gene products to collaborative lignocellulose digestion. While effi cient microbial cellulases have already been identifi ed and are presently being used in industrial applications, effi cient and inexpensive pre-treatments for lignin and hemicellulose depolymerizationare not yet well developed. In this respect, termite digestomics has already offered signifi cant insights, and can continue to identify relevant enzymes, as well as reveal how to optimally combine and utilize these enzymes for maximum synergy. The topics covered in this review are as follows: lignocellulose structure with emphasis on its potential for depolymerization by termite and gut endosymbiont-derived digestive enzymes; termite biology and ecology from the perspectives of termite nutrition, gut physiology, and lignocellulose digestion; and trends identifi ed through recent termite digestomics research.
Historically, the invertebrate pathogens of the genus Helicosporidium were considered to be either protozoa or fungi, but the taxonomic position of this group has not been considered since 1931. Recently, a Helicosporidium sp., isolated from the blackfly Simulium jonesi Stone & Snoddy (Diptera : Simuliidae), has been amplified in the heterologous host Helicoverpa zea. Genomic DNA has been extracted from gradient-purified cysts. The 18S, 28S and 5.8S regions of the Helicosporidium rDNA, as well as partial sequences of the actin and β-tubulin genes, were amplified by PCR and sequenced.Comparative analysis of these nucleotide sequences was performed using neighbour-joining and maximum-parsimony methods. All inferred phylogenetic trees placed Helicosporidium sp. among the green algae (Chlorophyta), and this association was supported by bootstrap and parsimony jackknife values. Phylogenetic analysis focused on the green algae depicted Helicosporidium sp. as a close relative of Prototheca wickerhamii and Prototheca zopfii (Chlorophyta, Trebouxiophyceae), two achlorophylous, pathogenic green algae. On the basis of this phylogenetic analysis, Helicosporidium sp. is clearly neither a protist nor a fungus, but appears to be the first described algal invertebrate pathogen. These conclusions lead us to propose the transfer of the genus Helicosporidium to Chlorophyta, Trebouxiophyceae.
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.