Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.
The oligosaccharide required for asparagine (N)-linked glycosylation of proteins in the endoplasmic reticulum (ER) is donated by the glycolipid Glc3Man9GlcNAc2-PP-dolichol. Remarkably, whereas glycosylation occurs in the ER lumen, the initial steps of Glc3Man9GlcNAc2-PP-dolichol synthesis generate the lipid intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) on the cytoplasmic side of the ER. Glycolipid assembly is completed only after M5-DLO is translocated to the luminal side. The membrane protein (M5-DLO scramblase) that mediates M5-DLO translocation across the ER membrane has not been identified, despite its importance for N-glycosylation. Building on our ability to recapitulate scramblase activity in proteoliposomes reconstituted with a crude mixture of ER membrane proteins, we developed a mass spectrometry-based 'activity correlation profiling' approach to identify scramblase candidates in the yeast Saccharomyces cerevisiae. Data curation prioritized six polytopic ER membrane proteins as scramblase candidates, but reconstitution-based assays and gene disruption in the protist Trypanosoma brucei revealed, unexpectedly, that none of these proteins is necessary for M5-DLO scramblase activity. Our results instead strongly suggest that M5-DLO scramblase activity is due to a protein, or protein complex, whose activity is regulated at the level of quaternary structure.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The canonical pathway of N-linked protein glycosylation in yeast and humans involves transfer of the oligosaccharide moiety from the glycolipid Glc3Man9GlcNAc2-PP-dolichol to select asparagine residues in proteins that have been translocated into the lumen of the endoplasmic reticulum (ER). Synthesis of Glc3Man9GlcNAc2-PP-dolichol occurs in two stages, producing first the key intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) on the cytoplasmic face of the ER, followed by translocation of M5-DLO across the ER membrane where the remaining glycosyltransfer reactions occur to complete the structure. The scramblase protein that mediates the translocation of M5-DLO across the ER membrane has not been identified, but activity assays provide compelling evidence that it is an ER membrane protein with exquisite substrate specificity. Here we report on our progress in identifying the M5-DLO/N-glycosylation scramblase via a mass spectrometry-based 'activity correlation profiling' approach.
As the primary interface between a cell and its environment, surface components of the plasma membrane mediate direct contact, perception of external cues and release of signalling molecules, while acting as a barrier that allows binding, uptake and secretion of diverse classes of substances. For pathogenic organisms, the functional integrity and composition of the cell surface impacts their virulence, infectivity and transmission (recently reviewed in de Castro Neto et al., 2021). GPI-anchored glycoproteins and glycoconjugates are abundantly expressed by many parasitic protozoa and these surface molecules perform functions that are crucial for host colonization, adaptation to environmental changes and evasion of the host immune response (reviewed in Aresta-Branco et al., 2019;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.