The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
As the primary interface between a cell and its environment, surface components of the plasma membrane mediate direct contact, perception of external cues and release of signalling molecules, while acting as a barrier that allows binding, uptake and secretion of diverse classes of substances. For pathogenic organisms, the functional integrity and composition of the cell surface impacts their virulence, infectivity and transmission (recently reviewed in de Castro Neto et al., 2021). GPI-anchored glycoproteins and glycoconjugates are abundantly expressed by many parasitic protozoa and these surface molecules perform functions that are crucial for host colonization, adaptation to environmental changes and evasion of the host immune response (reviewed in Aresta-Branco et al., 2019;
The biosynthesis of glycosylphosphatidylinositol (GPI) membrane protein anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from the sugar nucleotide UDP-GlcNAc to phosphatidylinositol. The reaction is catalyzed by GPI GlcNAc transferase, a multi-subunit complex comprising the catalytic subunit Gpi3/PIG-A, as well as at least five other subunits including the hydrophobic protein Gpi2 which is essential for activity in yeast and mammals, but whose function is not known. Here we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism, to investigate the function of Gpi2. We generated trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites (i) GPI GlcNAc transferase activity is reduced but not lost, in contrast with the situation in yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of the major surface proteins are underglycosylated when compared with their wild-type counterparts, indicating the importance of TbGPI2 for reactions that are expected to occur in the Golgi apparatus. Additionally, TbGPI2-null parasites were unable to perform social motility, a form of collective migration on agarose plates. Immunofluorescence microscopy localized TbGPI2 to the endoplasmic reticulum as expected, but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic non-canonical role in Golgi-localized GPI anchor modification in trypanosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.