Live animal movements are a major transmission route for the spread of infectious agents such as Mycobacterium bovis, the main agent of bovine Tuberculosis (bTB). France became officially bTB-free in 2001, but M. bovis is still circulating in the cattle population, with about a hundred of outbreaks per year, most located in a few geographic areas. The aim of this study was to analyse the role of cattle movements in bTB spread in France between 2005 and 2014, using social network analysis and logistic regression models. At a global scale, the trade network was studied to assess the association between several centrality measures and bTB infection though a case-control analysis. The bTB infection status was associated with a higher in-degree (odds-ratio [OR] = 2.4 [1.1–5.4]) and with a higher ingoing contact chain (OR = 2.2 [1.0–4.7]). At a more local scale, a second case-control analysis was conducted to estimate the relative importance of cattle movements and spatial neighbourhood. Only direct purchase from infected herds was shown to be associated with bTB infection (OR = 2.9 [1.7–5.2]), spatial proximity to infected herds being the predominant risk factor, with decreasing ORs when distance increases. Indeed, the population attributable fraction was 12% [5%–18%] for cattle movements and 73% [68%–78%] for spatial neighbourhood. Based on these results, networks of potential effective contacts between herds were built and analysed for the three major spoligotypes reported in France. In these networks, the links representing cattle movements were associated with higher edge betweenness than those representing the spatial proximity between infected herds. They were often links connecting distinct communities and sometimes distinct geographical areas. Therefore, although their role was quantitatively lower than the one of spatial neighbourhood, cattle movements appear to have been essential in the French bTB dynamics between 2005 and 2014.
The use of pastures is part of common herd management practices for livestock animals, but contagion between animals located on neighbouring pastures is one of the major modes of infectious disease transmission between herds. At the population level, this transmission is strongly constrained by the spatial organization of pastures. The aim of this study was to answer two questions: (i) is the spatial configuration of pastures favourable to the spread of infectious diseases in France? (ii) would biosecurity measures allow decreasing this vulnerability? Based on GIS data, the spatial organization of pastures was represented using networks. Nodes were the 3,159,787 pastures reported in 2010 by the French breeders to claim the Common Agricultural Policy subsidies. Links connected pastures when the distance between them was below a predefined threshold. Premises networks were obtained by aggregating into a single node all the pastures under the same ownership. Although the pastures network was very fragmented when the distance threshold was short (1.5 meters, relevant for a directly-transmitted disease), it was not the case when the distance threshold was larger (500 m, relevant for a vector-borne disease: 97% of the nodes in the largest connected component). The premises network was highly connected as the largest connected component always included more than 83% of the nodes, whatever the distance threshold. Percolation analyses were performed to model the population-level efficacy of biosecurity measures. Percolation thresholds varied according to the modelled biosecurity measures and to the distance threshold. They were globally high (e.g. >17% of nodes had to be removed, mimicking the confinement of animals inside farm buildings, to obtain the disappearance of the large connected component). The network of pastures thus appeared vulnerable to the spread of diseases in France. Only a large acceptance of biosecurity measures by breeders would allow reducing this structural risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.