BackgroundTriple-negative breast cancer (TNBC) is a poor prognostic breast cancer with the highest mutations and limited therapeutic choices. Cytokine networking between cancer cells and the tumor microenvironment (TME) maintains the self-renewing subpopulation of breast cancer stem cells (BCSCs) that mediate tumor heterogeneity, resistance and recurrence. Immunotherapy of those factors combined with targeted therapy or chemoagents may advantage TNBC treatment.ResultsWe found that the oncogene Multiple Copies in T-cell Malignancy 1 (MCT-1/MCTS1) expression is a new poor-prognosis marker in patients with aggressive breast cancers. Overexpressing MCT-1 perturbed the oncogenic breast epithelial acini morphogenesis and stimulated epithelial-mesenchymal transition and matrix metalloproteinase activation in invasive TNBC cells, which were repressed after MCT-1 gene silencing. As mammary tumor progression was promoted by oncogenic MCT-1 activation, tumor-promoting M2 macrophages were enriched in TME, whereas M2 macrophages were decreased and tumor-suppressive M1 macrophages were increased as the tumor was repressed via MCT-1 knockdown. MCT-1 stimulated interleukin-6 (IL-6) secretion that promoted monocytic THP-1 polarization into M2-like macrophages to increase TNBC cell invasiveness. In addition, MCT-1 elevated the soluble IL-6 receptor levels, and thus, IL-6R antibodies antagonized the effect of MCT-1 on promoting M2-like polarization and cancer cell invasion. Notably, MCT-1 increased the features of BCSCs, which were further advanced by IL-6 but prevented by tocilizumab, a humanized IL-6R antibody, thus MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization.ConclusionsThe MCT-1 pathway is a novel and promising therapeutic target for TNBC.Electronic supplementary materialThe online version of this article (10.1186/s12943-019-0988-0) contains supplementary material, which is available to authorized users.
Reactive oxygen species (ROS) produced during intracellular metabolism or triggered by extrinsic factors can promote neoplastic transformation and malignant microenvironment that mediate tumor development. Oligo-Fucoidan is a sulfated polysaccharide isolated from the brown seaweed. Using human THP-1 monocytes and murine Raw264.7 macrophages as well as human HCT116 colorectal cancer cells, primary C6P2-L1 colorectal cancer cells and human MDA-MB231 breast cancer cells, we investigated the effect of Oligo-Fucoidan on inhibiting M2 macrophage differentiation and its therapeutic potential as a supplement in chemotherapy and tumor prevention. We now demonstrate that Oligo-Fucoidan is an antioxidant that suppresses intracellular ROS and mitochondrial superoxide levels in monocytes/macrophages and in aggressive cancer cells. Comparable to ROS inhibitors (DPI and NAC), Oligo-Fucoidan directly induced monocyte polarization toward M1-like macrophages and repolarized M2 macrophages into M1 phenotypes. DPI and Oligo-Fucoidan also cooperatively prevented M2 macrophage invasiveness. Indirectly, M1 polarity was advanced particularly when DPI suppressed ROS generation and supplemented with Oligo-Fucoidan in the cancer cells. Moreover, cisplatin chemoagent polarized monocytes and M0 macrophages toward M2-like phenotypes and Oligo-Fucoidan supplementation reduced these side effects. Furthermore, Oligo-Fucoidan promoted cytotoxicity of cisplatin and antagonized cisplatin effect on cancer cells to prevent M2 macrophage differentiation. More importantly, Oligo-Fucoidan inhibited tumor progression and M2 macrophage infiltration in tumor microenvironment, thus increasing of anti-tumor immunity.
Background: Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management.Methods: Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment.Results: Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed deathligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44 high /CD24 low and EpCAM high cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/ PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80 high ) and M1-like (CD80 high and CD86 high ) phenotypes. In addition, olaparib-and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1
Triple-negative breast cancer (TNBC) has been shown with high mitochondrial oxidative phosphorylation and production of reactive oxygen species (ROS). MnSOD (SOD2) is a mitochondrial antioxidant defense that has been implicated in inhibition of human malignancies. However, the impact of MnSOD on immunosuppressive macrophage functions and TNBC aggressiveness has never been explored. We found here that SOD2high is primarily observed in the aggressive subtypes of HER2(+) breast cancers and TNBCs patients. Further analyses demonstrated that the oncoprotein multiple copies in T-cell malignancy-1 (MCT-1 or MCTS1) induces mitochondrial superoxide dismutase (MnSOD) in TNBC cells by stabilizing the transcription factor Nrf2. SOD2high/MCTS1high expression correlates with a poor prognosis in breast cancer patients. MnSOD in TNBC cells functions as a prooxidant peroxidase that increases mitochondrial ROS (mROS) and adaptation to oxidative stress under the oncogenic effect. Interleukin-6 (IL-6) in the MCT-1 pathway elevates Nrf2/MnSOD and mROS levels. Knockdown of MnSOD inhibits TNBC cell invasion, breast cancer stem cells (BCSCs), mROS, and IL-6 excretion promoted by MCT-1. TNBC cells deficient in MnSOD prevent the polarization and chemotaxis of M2 macrophages but improve the ability of M1 macrophages to engulf cancer cells. Quenching mROS with MitoQ, a mitochondria-targeted non-metal-based antioxidant MnSOD mimics, effectively suppresses BCSCs and M2 macrophage invasion exacerbated by MnSOD and MCT-1. Consistently, silencing MnSOD impedes TNBC progression and intratumoral M2 macrophage infiltration. We revealed a novel stratagem for TNBC management involving targeting the MCT-1 oncogene-induced mitochondrial prooxidant MnSOD pathway, which prevents the development of an immunosuppressive tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.