The basolateral amygdala (BLA) mediates the effects of stress and fear on rapid eye movement sleep (REM) and on REM-related theta (θ) oscillatory activity in the electroencephalograph (EEG), which is implicated in fear memory consolidation. We used optogenetics to assess the potential role of BLA glutamate neurons (BLAGlu) in regulating behavioral, stress and sleep indices of fear memory, and their relationship to altered θ. An excitatory optogenetic construct targeting glutamatergic cells (AAV-CaMKIIα-hChR2-eYFP) was injected into the BLA of mice. Telemetry was used for real-time monitoring of EEG, activity, and body temperature to determine sleep states and stress-induced hyperthermia (SIH). For 3 h following shock training (ST: 20 footshocks, 0.5 mA, 0.5 s, 1 min interval), BLA was optogenetically stimulated only during REM (REM + L) or NREM (NREM + L). Mice were then re-exposed to the fear context at 24 h, 48 h, and 1 week after ST and assessed for behavior, SIH, sleep and θ activity. Control mice were infected with a construct without ChR2 (eYFP) and studied under the same conditions. REM + L significantly reduced freezing and facilitated immediate recovery of REM tested at 24 h and 48 h post-ST during contextual re-exposures, whereas NREM + L had no significant effect. REM + L significantly reduced post-ST REM-θ, but attenuated REM-θ reductions at 24 h compared to those found in NREM + L and control mice. Fear-conditioned SIH persisted regardless of treatment. The results demonstrate that BLAGlu activity during post-ST REM mediates the integration of behavioral and sleep indices of fear memory by processes that are associated with θ oscillations within the amygdalo-hippocampal pathway. They also demonstrate that fear memories can remain stressful (as indicated by SIH) even when fear conditioned behavior (freezing) and changes in sleep are attenuated.
Stress induces neuroinflammation and disrupts sleep, which together can promote a number of stress-related disorders. Fear memories associated with stress can resurface and reproduce symptoms. Our previous studies have demonstrated sleep outcomes can be modified by stressor controllability following stress and fear memory recall. However, it is unknown how stressor controllability alters neuroinflammatory signaling and its association with sleep following fear memory recall. Mice were implanted with telemetry transmitters and experienced escapable or inescapable footshock and then were re-exposed to the shuttlebox context one week later. Gene expression was assessed with Nanostring® panels using RNA extracted from the basolateral amygdala and hippocampus. Freezing and temperature were examined as behavioral measures of fear. Increased sleep after escapable stress was associated with a down-regulation in neuro-inflammatory and neuro-degenerative related genes, while decreased sleep after inescapable stress was associated with an up-regulation in these genes. Behavioral measures of fear were virtually identical. Sleep and neuroimmune responses appear to be integrated during fear conditioning and reproduced by fear memory recall. The established roles of disrupted sleep and neuroinflammation in stress-related disorders indicate that these differences may serve as informative indices of how fear memory can lead to psychopathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.