The semantics of most logics of time and probability is given via a probability distribution over
threads
, where a thread is a structure specifying what will be true at different points in time (in the future). When assessing the probabilities of statements such as “Event
a
will occur within 5 units of time of event
b
,” there are many different semantics possible, even when assessing the truth of this statement within a single thread. We introduce the syntax of annotated probabilistic temporal (APT) logic programs and axiomatically introduce the key notion of a frequency function (for the first time) to capture different types of intrathread reasoning, and then provide a semantics for intrathread and interthread reasoning in APT logic programs parameterized by such frequency functions. We develop a comprehensive set of complexity results for consistency checking and entailment in APT logic programs, together with sound and complete algorithms to check consistency and entailment. The basic algorithms use linear programming, but we then show how to substantially and correctly reduce the sizes of these linear programs to yield better computational properties. We describe a real world application we are developing using APT logic programs.
We report here that in rat and human neuroprogenitor cells as well as rat embryonic cortical neurons Zika virus (ZIKV) infection leads to ribosomal stress that is characterized by structural disruption of the nucleolus. The anti-nucleolar effects were most pronounced in postmitotic neurons. Moreover, in the latter system, nucleolar presence of ZIKV capsid protein (ZIKV-C) was associated with ribosomal stress and apoptosis. Deletion of 22 C-terminal residues of ZIKV-C prevented nucleolar localization, ribosomal stress and apoptosis. Consistent with a casual relationship between ZIKV-C-induced ribosomal stress and apoptosis, ZIKV-C-overexpressing neurons were protected by loss-of-function manipulations targeting the ribosomal stress effector Tp53 or knockdown of the ribosomal stress mediator RPL11. Finally, capsid protein of Dengue virus, but not West Nile virus, induced ribosomal stress and apoptosis. Thus, anti-nucleolar and pro-apoptotic effects of protein C are flavivirus-species specific. In the case of ZIKV, capsid protein-mediated ribosomal stress may contribute to neuronal death, neurodevelopmental disruption and microcephaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.