Some iceberg-calving outlet glaciers flow continuously at speeds normally associated with surging glaciers and exhibit dramatic instability scenarios related to those suggested for marine ice sheets. No temperate tidewater glaciers are known to have floating termini, but many polar and subpolar tidewater glaciers do. The fast flow of temperate calving glaciers is almost entirely due to basal sliding and appears to be a function of the effective pressure on the bed, which may approach zero, and the longitudinal back stress on the terminus. The terminus boundary condition (the calving relation) is imperfectly known yet is vital to the dynamics of these glaciers. Calving relations for grounded tidewater glaciers have been suggested on empirical grounds but have not been rigorously tested; the calving relations for floating termini are virtually unknown. This, together with the imperfect understanding of basal sliding, inhibits confidence in our understanding of the stability of these glaciers. Columbia Glacier (Alaska) is an instructive example because observations have been made on the major changes in its geometry, calving rate, and dynamics that have occurred in less than 10 years. The calving flux has increased more rapidly than the glacier flux, causing thinning and retreat; as a result, the ice velocity has increased markedly. The short-term velocity changes relate to changes in back pressure (ice recession, tidal changes) and the flux of water injected to the bed. These results have relevance to the mechanisms of basal sliding, glacier surges, and the stability of marine ice streams. 197623 0.7 1985 19 3
A total of 204 surging glaciers has been identified in western North America. These glaciers surge repeatedly and probably with uniform periods (from about 15 to greater than 100 years). Ice flow rates during the active phase may range from about 150 m/year to > 6 km/year, and horizontal displacements may range from < 1 to > 11 km. Ice reservoir and ice receiving areas can be defined for surging glaciers, and the reservoir area does not necessarily coincide with the accumulation area. Glaciers of all shapes, sizes, and longitudinal profiles can surge, and no unusual "ice dams" or bedrock constrictions are evident. Surges occur in many different climatic, tectonic, and geologic environments, but only in certain limited areas (mainly in the Alaska, eastern Wrangell, and St. Elias mountains). Three types of surging glaciers are defined: (I) large to moderate-sized glaciers with large displacements and very fast flow, (II) large to moderate glaciers with moderate displacements and flow rates, and (III) small glaciers with small displacements and moderate to fast flow rates. All three types involve an inherent instability which is self-triggered at regular intervals, but with Type I surges an additional (unknown) mechanism produces the very high flow rates.
Highest altitude a t which thinning occurred m Dimensions depend on form of the calving relation.
Some of the ideas about glacier surging are considered, mainly but not entirely in the light of observations of temperate glaciers in Alaska, U.S.A., made within the last 15 years. Climate has an influence on surge recurrence interval. Climate and weather also affect surge initiation, termination and magnitude. Regional studies lead to the speculation that subglacial “till” plays a key role in surging, and it has been found under all surge-type glaciers studied so far, including Black Rapids and Variegated Glaciers, Alaska. In most of the glaciers studied, till deformation processes dominate the motion in quiescence. The linked-cavity model of surge triggering and rapid motion is not consistent with these observations, but the limited coverage of the observations does not rule it out under parts of the glaciers studied. The till observations in Alaska raise old questions about the interaction between till and the hydraulic systems of temperate glaciers. The role of stored water, which observations show to be active even in winter on Black Rapids Glacier, is noted.
In western North America 204 surging glaciers have been identified by aerial photographic observations. These glaciers exhibit either intense crevassing and rapid ice displacements during surges or distinctive surface features which have resulted from past surges. Distribution of these unusual glaciers is not random throughout the glacierized areas, as they occur only in the Alaska Range, eastern Wrangell Mountains, eastern Chugach Mountains, Icefield Ranges, and the St Elias Mountains near Yakutat and Glacier Bay. No surging glaciers have been identified in the Brooks Range, Kenai Mountains, west and central Chugach Mountains, west and central Wrangell Mountains, Coast Mountains, Rocky Mountains, Cascade Range, Olympic Mountains, or Sierra Nevada. No definite reason for this restricted distribution is apparent. Surging glaciers are found in maritime to continental and temperate to subpolar environments. Practically all physical forms of glaciers are represented. The restricted distribution does not relate to topography, bedrock type, altitude, orientation, or size of glacier. Some surging glaciers are associated with fault-related valleys, but neither recent faulting nor earthquakes have initiated surge activity. Possible causes for the limited distribution of surges are unusual bedrock roughness or permeability in certain areas, anomalously high ground-water temperatures, and/or abnormal geothermal heat flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.