Some iceberg-calving outlet glaciers flow continuously at speeds normally associated with surging glaciers and exhibit dramatic instability scenarios related to those suggested for marine ice sheets. No temperate tidewater glaciers are known to have floating termini, but many polar and subpolar tidewater glaciers do. The fast flow of temperate calving glaciers is almost entirely due to basal sliding and appears to be a function of the effective pressure on the bed, which may approach zero, and the longitudinal back stress on the terminus. The terminus boundary condition (the calving relation) is imperfectly known yet is vital to the dynamics of these glaciers. Calving relations for grounded tidewater glaciers have been suggested on empirical grounds but have not been rigorously tested; the calving relations for floating termini are virtually unknown. This, together with the imperfect understanding of basal sliding, inhibits confidence in our understanding of the stability of these glaciers. Columbia Glacier (Alaska) is an instructive example because observations have been made on the major changes in its geometry, calving rate, and dynamics that have occurred in less than 10 years. The calving flux has increased more rapidly than the glacier flux, causing thinning and retreat; as a result, the ice velocity has increased markedly. The short-term velocity changes relate to changes in back pressure (ice recession, tidal changes) and the flux of water injected to the bed. These results have relevance to the mechanisms of basal sliding, glacier surges, and the stability of marine ice streams. 197623 0.7 1985 19 3
Abstract. Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume.
A total of 204 surging glaciers has been identified in western North America. These glaciers surge repeatedly and probably with uniform periods (from about 15 to greater than 100 years). Ice flow rates during the active phase may range from about 150 m/year to > 6 km/year, and horizontal displacements may range from < 1 to > 11 km. Ice reservoir and ice receiving areas can be defined for surging glaciers, and the reservoir area does not necessarily coincide with the accumulation area. Glaciers of all shapes, sizes, and longitudinal profiles can surge, and no unusual "ice dams" or bedrock constrictions are evident. Surges occur in many different climatic, tectonic, and geologic environments, but only in certain limited areas (mainly in the Alaska, eastern Wrangell, and St. Elias mountains). Three types of surging glaciers are defined: (I) large to moderate-sized glaciers with large displacements and very fast flow, (II) large to moderate glaciers with moderate displacements and flow rates, and (III) small glaciers with small displacements and moderate to fast flow rates. All three types involve an inherent instability which is self-triggered at regular intervals, but with Type I surges an additional (unknown) mechanism produces the very high flow rates.
Ice loss to the sea currently accounts for virtually all of the sea-level rise that is not attributable to ocean warming, and about 60% of the ice loss is from glaciers and ice caps rather than from the two ice sheets. The contribution of these smaller glaciers has accelerated over the past decade, in part due to marked thinning and retreat of marine-terminating glaciers associated with a dynamic instability that is generally not considered in mass-balance and climate modeling. This acceleration of glacier melt may cause 0.1 to 0.25 meter of additional sea-level rise by 2100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.