A new class of neuromorphic processors promises to provide fast and power-efficient execution of spiking neural networks with on-chip synaptic plasticity. This efficiency derives in part from the fine-grained parallelism as well as event-driven communication mediated by spatially and temporally sparse spike messages. Another source of efficiency arises from the close spatial proximity between synapses and the sites where their weights are applied and updated. This proximity of compute and memory elements drastically reduces expensive data movements but imposes the constraint that only local operations can be efficiently performed, similar to constraints present in biological neural circuits. Efficient weight update operations should therefore only depend on information available locally at each synapse as non-local operations that involve copying, taking a transpose, or normalizing an entire weight matrix are not efficiently supported by present neuromorphic architectures. Moreover, spikes are typically non-negative events, which imposes additional constraints on how local weight update operations can be performed. The Locally Competitive Algorithm (LCA) is a dynamical sparse solver that uses only local computations between non-spiking leaky integrator neurons, allowing for massively parallel implementations on compatible neuromorphic architectures such as Intel's Loihi research chip. It has been previously demonstrated that non-spiking LCA can be used to learn dictionaries of convolutional kernels in an unsupervised manner from raw, unlabeled input, although only by employing non-local computation and signed non-spiking outputs. Here, we show how unsupervised dictionary learning with spiking LCA (S-LCA) can be implemented using only local computation and unsigned spike events, providing a promising strategy for constructing self-organizing neuromorphic chips.
The optic nerve transmits visual information to the brain as trains of discrete events, a low-power, low-bandwidth communication channel also exploited by silicon retina cameras. Extracting highfidelity visual input from retinal event trains is thus a key challenge for both computational neuroscience and neuromorphic engineering. Here, we investigate whether sparse coding can enable the reconstruction of high-fidelity images and video from retinal event trains. Our approach is analogous to compressive sensing, in which only a random subset of pixels are transmitted and the missing information is estimated via inference. We employed a variant of the Locally Competitive Algorithm to infer sparse representations from retinal event trains, using a dictionary of convolutional features optimized via stochastic gradient descent and trained in an unsupervised manner using a local Hebbian learning rule with momentum. We used an anatomically realistic retinal model with stochastic graded release from cones and bipolar cells to encode thumbnail images as spike trains arising from ON and OFF retinal ganglion cells. The spikes from each model ganglion cell were summed over a 32 msec time window, yielding a noisy rate-coded image. Analogous to how the primary visual cortex is postulated to infer features from noisy spike trains arising from the optic nerve, we inferred a higher-fidelity sparse reconstruction from the noisy rate-coded image using a convolutional dictionary trained on the original CIFAR10 database. To investigate whether a similar approach works on non-stochastic data, we demonstrate that the same procedure can be used to reconstruct high-frequency video from the asynchronous events arising from a silicon retina camera moving through a laboratory environment.
Material clusters of different sizes are known to exist in high-temperature plasmas due to plasma-wall interactions. The facts that these clusters, ranging from sub-microns to above mm in size, can move from one location to another quickly and that there are a lot of them make high-speed imaging and tracking one of the best, effective, and sometimes only diagnostic. An unsupervised machine learning technique based on deconvolutional neural networks is developed to analyze two-camera videos of high-temperature microparticles generated from exploding wires. The neural network utilizes a locally competitive algorithm to infer representations and optimize a dictionary composed of kernels, or basis vectors, for image analysis. Our primary goal is to use this method for feature recognition and prediction of the time-dependent three-dimensional (or “4D”) microparticle motion. Features equivalent to local velocity vectors have been identified as the dictionary kernels or “building blocks” of the scene. The dictionary elements from the left and right camera views are found to be strongly correlated and satisfy the projection geometrical constraints. The results show that unsupervised machine learning techniques are promising approaches to process large sets of images for high-temperature plasmas and other scientific experiments. Machine learning techniques can be useful to handle the large amount of data and therefore aid the understanding of plasma-wall interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.