The effectiveness of catch and release as a conservation practice assumes minimal impacts to released fish. In most cases, angling-related stressors can be mitigated via changes to angler behavior that reduce fight duration, handling, and air exposure. In some cases, stressors may significantly impact the ability of fish to engage in normal swimming behavior upon release. In these scenarios, it may be beneficial for anglers to assist recovery or retain fish until they are adequately recovered. We investigated the effectiveness of two assisted-recovery devices at facilitating behavioral recovery in angled Rainbow Trout Oncorhynchus mykiss: (1) retention in a flow box, or (2) retention in a water-filled cooler. Additionally, we compared the effects of assisted recovery in surface water (24-27°C) or cool water pumped from the hypolimnion (17-19°C). From July to mid-September 2020, 169 fish were angled from five stocked lakes at Kenauk Nature (Montebello, Quebec). Fish were air exposed for 30 s, for 15 s, or not at all (0 s) and were held in a flow box or a water-filled cooler for 3 min, while fish in a control group were immediately released. Triaxial acceleration and temperature biologgers were temporarily fixed around the trunk of the fish with Velcro to observe postrelease swimming behavior for 10 min. Rainbow Trout that were held in assisted-recovery devices regained equilibrium significantly more quickly than those that were immediately released, and fish that were held in 17-19°C water regained equilibrium the most rapidly. In fish that were air exposed for 30 s, individuals that were held in recovery devices exhibited greater swimming activity compared to those that were immediately released. Our study demonstrates that for Rainbow Trout, assisted-recovery devices can reduce equilibrium impairment, especially when water in the recovery devices is significantly cooler than the relatively warm surface water temperature. Global water temperatures are expected to rise as a result of
Recreational fisheries contribute substantially to the sociocultural and economic well‐being of coastal and riparian regions worldwide, but climate change threatens their sustainability. Fishery managers require information on how climate change will impact key recreational species; however, the absence of a global assessment hinders both directed and widespread conservation efforts. In this study, we present the first global climate change vulnerability assessment of recreationally targeted fish species from marine and freshwater environments (including diadromous fishes). We use climate change projections and data on species’ physiological and ecological traits to quantify and map global climate vulnerability and analyze these patterns alongside the indices of socioeconomic value and conservation effort to determine where efforts are sufficient and where they might fall short. We found that over 20% of recreationally targeted fishes are vulnerable to climate change under a high emission scenario. Overall, marine fishes had the highest number of vulnerable species, concentrated in regions with sensitive habitat types (e.g., coral reefs). However, freshwater fishes had higher proportions of species at risk from climate change, with concentrations in northern Europe, Australia, and southern Africa. Mismatches in conservation effort and vulnerability were found within all regions and life‐history groups. A key pattern was that current conservation effort focused primarily on marine fishes of high socioeconomic value rather than on the freshwater and diadromous fishes that were predicted to be proportionately more vulnerable. While several marine regions were notably lacking in protection (e.g., Caribbean Sea, Banda Sea), only 19% of vulnerable marine species were without conservation effort. By contrast, 72% of freshwater fishes and 33% of diadromous fishes had no measures in place, despite their high vulnerability and cultural value. The spatial and taxonomic analyses presented here provide guidance for the future conservation and management of recreational fisheries as climate change progresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.