Multiple members of the transforming growth factor beta (TGFβ) family of secreted factors play central inductive and patterning roles during embryogenesis. During gastrulation in vertebrates, the bone morphogenetic protein (BMP) sub-family is linked to formation of the embryonic organizer, Spemann's organizer in Xenopus, and dorsal-ventral mesoderm patterning. Our knowledge regarding the BMP receptors mediating this signaling is still very incomplete. The BMPR1A (ALK3) and BMPR1B (ALK6) receptors are known to mediate the BMP4 signal. These receptors belong to the ALK1 subfamily of type I receptors that also includes ACVR1 (ALK2), and ACVRL1 (ALK1). We studied by qPCR and in situ hybridization the spatio-temporal expression patterns of ALK2 and ALK1 and compared them to ALK3 and ALK6, and to the main BMPs expressed during gastrulation, i.e., BMP4, BMP7, BMP2, and ADMP, in an attempt to establish a link between ligands and receptors. There is extensive overlap between BMP4, and ALk3 and Alk6 expression, supporting their functional interaction. Robust Alk6 expression was observed from mid-gastrula. Animal region expression of both receptors shows co-expression with BMP4 and BMP7. Alk2 transcripts were detected within the organizer, overlapping with its proposed ligand, ADMP, suggesting a probable function within the organizer. Alk1 is very weakly expressed during gastrula, but its transcripts were localized to the lateral marginal zone flanking the organizer domain. No receptor closely matched the maternal BMP2 expression, although Alk2, Alk3, and Alk6, have transcripts of maternal origin. Our analysis shows that the BMP ligands and their receptors exhibit dynamic expression patterns during gastrula stages.
BackgroundThe bone morphogenetic protein (BMP) signaling gradient is central for dorsoventral patterning in amphibian embryos. This gradient is established through the interaction of several BMPs and BMP antagonists and modulators, some secreted by Spemann's organizer, a cluster of cells coordinating embryonic development. Anti-dorsalizing morphogenetic protein (ADMP), a BMP-like transforming growth factor beta ligand, negatively affects the formation of the organizer, although it is robustly expressed within the organizer itself. Previously, we proposed that this apparent discrepancy may be important for the ability of ADMP to scale the BMP gradient with embryo size, but how this is achieved is unclear.ResultsHere we report that ADMP acts in the establishment of the organizer via temporally and mechanistically distinct signals. At the onset of gastrulation, ADMP is required to establish normal organizer-specific gene expression domains, thus displaying a dorsal, organizer-promoting function. The organizer-restricting, BMP-like function of ADMP becomes apparent slightly later, from mid-gastrula. The organizer-promoting signal of ADMP is mediated by the activin A type I receptor, ACVR1 (also known as activin receptor-like kinase-2, ALK2). ALK2 is expressed in the organizer and is required for organizer establishment. The anti-organizer function of ADMP is mediated by ACVRL1 (ALK1), a putative ADMP receptor expressed in the lateral regions flanking the organizer that blocks expansion of the organizer. Truncated ALK1 prevents the organizer-restricting effects of ADMP overexpression, suggesting a ligand-receptor interaction. We also present a mathematical model of the regulatory network controlling the size of the organizer.ConclusionsWe show that the opposed, organizer-promoting and organizer-restricting roles of ADMP are mediated by different receptors. A self-regulating network is proposed in which ADMP functions early through ALK2 to expand its own expression domain, the organizer, and later functions through ALK1 to restrict this domain. These effects are dependent on ADMP concentration, timing, and the spatial localization of the two receptors. This self-regulating temporal switch may control the size of the organizer and the genes expressed within in response to genetic and external stimuli during gastrulation.Electronic supplementary materialThe online version of this article (10.1186/s12915-018-0483-x) contains supplementary material, which is available to authorized users.
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.