Three-dimensional reconstruction of developing fiber pathways is essential to assessing the developmental course of fiber pathways in the whole brain. We applied diffusion spectrum imaging (DSI) tractography to five juvenile ex vivo cat brains at postnatal day (P) 35, when the degree of myelination varies across brain regions. We quantified diffusion properties (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]) and other measurements (number, volume, and voxel count) on reconstructed pathways for projection (cortico-spinal and thalamo-cortical), corpus callosal, limbic (cingulum and fornix), and association (cortico-cortical) pathways, and characterized regional differences in maturation patterns by assessing diffusion properties. FA values were significantly higher in cortico-cortical pathways within the right hemisphere compared to those within the left hemisphere, while the other measurements for the cortico-cortical pathways within the hemisphere did not show asymmetry. ADC values were not asymmetric in both types of pathways. Interestingly, tract count and volume were significantly larger in the left thalamo-cortical pathways compared to the right thalamo-cortical pathways. The bilateral thalamo-cortical pathways showed high FA values compared to the other fiber pathways. On the other hand, ADC values did not show any differences across pathways studied. These results demonstrate that DSI tractography successfully depicted regional variations of white matter tracts during development when myelination is incomplete. Low FA and high ADC values in the cingulum bundle suggest that the cingulum bundle is less mature than the others at this developmental stage.
The insula is a multimodal sensory integration structure that, in addition to serving as a gateway between somatosensory areas and limbic structures, plays a crucial role in autonomic nervous system function. While anatomical studies following the development of the insula have been conducted, currently, no studies have been published in human fetuses tracking the development of neuronal migration or of white matter tracts in the cortex. In this study, we aimed to follow the neuronal migration and subsequent maturation of axons in and around the insula in human fetal ages. Using high-angular resolution diffusion magnetic resonance imaging tractography, major white matter pathways to/from the insula and its surrounding operculum were identified at a number of time points during human gestation. Pathways likely linked to neuronal migration from the ventricular zone to the inferior frontal gyrus, superior temporal region, and the insular cortex were detected in the earliest gestational age studied (15 GW). Tractography reveals neuronal migration to areas surrounding the insula occurred at different time points. These results, in addition to demonstrating key time points for neuronal migration, suggest that neurons and axonal fiber pathways underlying the insula and its surrounding gyri mature differentially despite their relationship during cortical folding.
Diffusion magnetic resonance (MR) tractography represents a novel opportunity to investigate conserved and deviant developmental programs between humans and other species such as mice. To that end, we acquired high angular resolution diffusion MR scans of mice [embryonic day (E) 10.5 to postnatal week 4] and human brains [gestational week (GW) 17–30] at successive stages of fetal development to investigate potential evolutionary changes in radial organization and emerging pathways between humans and mice. We compare radial glial development as well as commissural development (e.g., corpus callosum), primarily because our findings can be integrated with previous work. We also compare corpus callosal growth trajectories across primates (i.e., humans and rhesus macaques) and rodents (i.e., mice). One major finding is that the developing cortex of humans is predominated by pathways likely associated with a radial glial organization at GW 17–20, which is not as evident in age-matched mice (E 16.5, 17.5). Another finding is that, early in development, the corpus callosum follows a similar developmental timetable in primates (i.e., macaques and humans) as in mice. However, the corpus callosum grows for an extended period of time in primates compared with rodents. Taken together, these findings highlight deviant developmental programs underlying the emergence of cortical pathways in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.