Adversarial attacks involve adding, small, often imperceptible, perturbations to inputs with the goal of getting a machine learning model to misclassifying them. While many different adversarial attack strategies have been proposed on image classification models, object detection pipelines have been much harder to break. In this paper, we propose a novel strategy to craft adversarial examples by solving a constrained optimization problem using an adversarial generator network. Our approach is fast and scalable, requiring only a forward pass through our trained generator network to craft an adversarial sample. Unlike in many attack strategies we show that the same trained generator is capable of attacking new images without explicitly optimizing on them. We evaluate our attack on a trained Faster R-CNN face detector on the cropped 300-W face dataset where we manage to reduce the number of detected faces to 0.5% of all originally detected faces. In a different experiment, also on 300-W, we demonstrate the robustness of our attack to a JPEG compression based defense typical JPEG compression level of 75% reduces the effectiveness of our attack from only 0.5% of detected faces to a modest 5.0%.
Learning by contrasting positive and negative samples is a general strategy adopted by many methods. Noise contrastive estimation (NCE) for word embeddings and translating embeddings for knowledge graphs are examples in NLP employing this approach. In this work, we view contrastive learning as an abstraction of all such methods and augment the negative sampler into a mixture distribution containing an adversarially learned sampler. The resulting adaptive sampler finds harder negative examples, which forces the main model to learn a better representation of the data. We evaluate our proposal on learning word embeddings, order embeddings and knowledge graph embeddings and observe both faster convergence and improved results on multiple metrics.
Dialogue systems powered by large pretrained language models exhibit an innate ability to deliver fluent and natural-sounding responses. Despite their impressive performance, these models are fitful and can often generate factually incorrect statements impeding their widespread adoption. In this paper, we focus on the task of improving faithfulness and reducing hallucination of neural dialogue systems to known facts supplied by a Knowledge Graph (KG). We propose NEU-RAL PATH HUNTER which follows a generatethen-refine strategy whereby a generated response is amended using the KG. NEURAL PATH HUNTER leverages a separate tokenlevel fact critic to identify plausible sources of hallucination followed by a refinement stage that retrieves correct entities by crafting a query signal that is propagated over a k-hop subgraph. We empirically validate our proposed approach on the OpenDialKG dataset (Moon et al., 2019) against a suite of metrics and report a relative improvement of faithfulness over dialogue responses by 20.35% based on FeQA (Durmus et al., 2020). The code is available at https://github.com/ nouhadziri/Neural-Path-Hunter.
Learning low-dimensional representations for entities and relations in knowledge graphs using contrastive estimation represents a scalable and effective method for inferring connectivity patterns. A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples, which force the embedding model to learn discriminative representations and find critical characteristics of observed data. While earlier methods either employ too simple corruption distributions, i.e. uniform, yielding easy uninformative negatives or sophisticated adversarial distributions with challenging optimization schemes, they do not explicitly incorporate known graph structure resulting in suboptimal negatives. In this paper, we propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node's k-hop neighborhood. Empirically, we demonstrate that SANS finds semantically meaningful negatives and is competitive with SOTA approaches while requires no additional parameters nor difficult adversarial optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.