Sentiment analysis from text consists of extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. It is often equated to opinion mining, but it should also encompass emotion mining. Opinion mining involves the use of natural language processing and machine learning to determine the attitude of a writer towards a subject. Emotion mining is also using similar technologies but is concerned with detecting and classifying writers emotions toward events or topics. Textual emotion-mining methods have various applications, including gaining information about customer satisfaction, helping in selecting teaching materials in e-learning, recommending products based on users emotions, and even predicting mental-health disorders. In surveys on sentiment analysis, which are often old or incomplete, the strong link between opinion mining and emotion mining is understated. This motivates the need for a different and new perspective on the literature on sentiment analysis, with a focus on emotion mining. We present the state-of-the-art methods and propose the following contributions: (1) a taxonomy of sentiment analysis; (2) a survey on polarity classification methods and resources, especially those related to emotion mining; (3) a complete survey on emotion theories and emotion-mining research; and (4) some useful resources, including lexicons and datasets.
Most recent semantic segmentation methods adopt a U-Net framework with an encoder-decoder architecture. It is still challenging for U-Net with a simple skip connection scheme to model the global multi-scale context: 1) Not each skip connection setting is effective due to the issue of incompatible feature sets of encoder and decoder stage, even some skip connection negatively influence the segmentation performance; 2) The original U-Net is worse than the one without any skip connection on some datasets. Based on our findings, we propose a new segmentation framework, named UCTransNet (with a proposed CTrans module in U-Net), from the channel perspective with attention mechanism. Specifically, the CTrans (Channel Transformer) module is an alternate of the U-Net skip connections, which consists of a sub-module to conduct the multi-scale Channel Cross fusion with Transformer (named CCT) and a sub-module Channel-wise Cross-Attention (named CCA) to guide the fused multi-scale channel-wise information to effectively connect to the decoder features for eliminating the ambiguity. Hence, the proposed connection consisting of the CCT and CCA is able to replace the original skip connection to solve the semantic gaps for an accurate automatic medical image segmentation. The experimental results suggest that our UCTransNet produces more precise segmentation performance and achieves consistent improvements over the state-of-the-art for semantic segmentation across different datasets and conventional architectures involving transformer or U-shaped framework. Code: https://github.com/McGregorWwww/UCTransNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.