We propose a machine learning approach to action prediction in oneshot games. In contrast to the huge literature on learning in games where an agent's model is deduced from its previous actions in a multi-stage game, we propose the idea of inferring correlations between agents' actions in different one-shot games in order to predict an agent's action in a game which she did not play yet. We define the approach and show, using real data obtained in experiments with human subjects, the feasibility of this approach. Furthermore, we demonstrate that this method can be used to increase payoffs of an adequately informed agent. This is, to the best of our knowledge, the first proposed and tested approach for learning in one-shot games, which is the most basic form of multiagent interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.