The promoter regions of MHC class II genes are characterized by the presence of conserved sequence motifs called S,X and Y boxes, which are crucial for regulation of transcription of these genes. In humans, promoter polymorphism is known to result in differential transcriptional activity at both inter-locus and inter-allelic levels, but it is not yet known how this relates to tissue-specific expression of MHC class II molecules. We sequenced the 5' regulatory regions of alpha and beta genes of I-A and I-E molecules from four mouse haplotypes and found allelic polymorphisms which were mainly confined to the X box. The promoter sequences of I-Ea genes were non-polymorphic. Transfection of four antigen-presenting cell types with promoter-reporter gene constructs revealed that the promoter sequence polymorphisms result in distinct allele- and tissue-specific activity patterns. Mutagenesis experiments in which the X2 box was reshuffled between I-A beta alleles demonstrated that this box contributes to regulation of differential MHC class II expression in the four cell types. The possibility is discussed that tissue-specific MHC class II expression may control differentiation of T-cell subsets.
The H-2Ab allele exerts a dominant down-regulatory effect on the anti-allo-HPPD (4-hydroxyphenylpyruvate dioxygenase) antibody response, through a hitherto unknown mechanism. In the present study, the allo-variable peptide bound to responder H-2Ak molecules with higher affinity than to H-2Ab ones, arguing against the operation of an affinity hierarchy. Quantitative polymerase chain reaction revealed differences in cytokine mRNA expression between suppressed and high-responder mice. Lymph node cells of responder but not suppressed mice contained high levels of interleukin (IL)-4 mRNA as early as 11 h post-immunization and continued to do so for at least 8 days; this early burst was paralleled by a small burst in transforming growth factor (TGF)-beta mRNA level. Differences in IL-12 mRNA were not detected, although an early IL-12 effect could not be excluded. Interferon (IFN)-gamma appeared to contribute to the suppression at later time points. Early treatment of responder mice with anti-IL-4 monoclonal antibody (11B11) down-regulated the antibody response. The proliferative T cell response from hyperimmunized mice was reduced but still detectable in the presence of an H-2Ab allele. Thus, in the presence of this allele, the Th1 response is enhanced and that of Th2 cells suppressed, apparently as a result of the bias of H-2Ab-restricted T cells in favor of the Th1 subset.
To investigate the role of interleukin (IL)-4 during the triggering of collagen-induced arthritis, we examined the effects of the I-A(b) and I-E protective/suppressive genes and passively administered anti-IL-4 monoclonal antibody. In contrast to the action of I-E expression on its own, which has mainly a suppressive effect post-triggering, the combination of I-A(b) and I-E had a marked protective effect. Assuming, on the basis of previous experience with the I-A(b) allele, that it might act through suppressing early IL-4 production, we treated mice with the 11B11 IL-4-neutralizing antibody around the time of initial immunization with collagen. Treatment over a period extending to 6 days post-immunization exacerbated the arthritis, but when curtailed to 2 days post-immunization (and tested in pristane-primed animals), the disease was reduced. We conclude that IL-4 plays an essential role in triggering the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.