Museum contents are vulnerable to bad ambience conditions and human vandalization. Preserving the contents of museums is a duty towards humanity. In this paper, we develop an Internet of Things (IoT)-based system for museum monitoring and control. The developed system does not only autonomously set the museum ambience to levels that preserve the health of the artifacts and provide alarms upon intended or unintended vandalization attempts, but also allows for remote ambience control through authorized Internet-enabled devices. A key differentiating aspect of the proposed system is the use of always-on and power-hungry sensors for comprehensive and precise museum monitoring, while being powered by harvesting the Radio Frequency (RF) energy freely available within the museum. This contrasts with technologies proposed in the literature, which use RF energy harvesting to power simple IoT sensing devices. We use rectenna arrays that collect RF energy and convert it to electric power to prolong the lifetime of the sensor nodes. Another important feature of the proposed system is the use of deep learning to find daily trends in the collected environment data. Accordingly, the museum ambience is further optimized, and the system becomes more resilient to faults in the sensed data.
IoT system becomes a hot topic nowadays for smart home. IoT helps devices to communicate together without human intervention inside home, so it is offering many challenges. A new smart home IoT platform powered using electromagnetic energy harvesting is proposed in this paper. It contains a high gain transmitted antenna array and efficient circularly polarized array rectenna system to harvest enough power from any direction to increase lifetime of the batteries used in the IoT system. Optimized energy consumption, the software with adopting the Zigbee protocol of the sensor node, and a low-power microcontroller are used to operate in lower power modes. The proposed system has an 84.6-day lifetime which is approximately 10 times the lifetime for a similar system. On the other hand, the proposed power management circuit is operated at 0.3 V DC to boost the voltage to ~3.7 V from radio frequency energy harvesting and manage battery level to increase the battery lifetime. A predictive indoor environment monitoring system is designed based on a novel hybrid system to provide a nonstatic plan, approve energy consumption, and avoid failure of sensor nodes in a smart home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.