In multiagent systems, social dilemmas often arise whenever there is a competition over the limited resources. The major challenge is to establish cooperation among intelligent virtual agents for solving the situations of social dilemmas. In humans, personality and emotions are the primary factors that lead them toward a cooperative environment. To make agents cooperate, they have to become more like humans, that is, believable. Therefore, we hypothesize that emotions according to the personality give birth to believability, and if believability is introduced into agents through emotions, it improves their survival rate in social dilemma situations. The existing researches have introduced different computational models to introduce emotions in virtual agents, but they lack emotions through neurotransmitters. We have proposed a neurotransmitters-based deep Q-learning computational model in multiagents that is a suitable choice for emotion modeling and, hence, believability. The proposed model regulates the agents’ emotions by controlling the virtual neurotransmitters (dopamine and oxytocin) according to the agent’s personality. The personality of the agent is introduced using OCEAN model. To evaluate the proposed system, we simulated a survival scenario with limited food resources in different experiments. These experiments vary the number of selfish agents (higher neuroticism personality trait) and the selfless agents (higher agreeableness personality trait). Experimental results show that by adding the selfless agents in the scenario, the agents develop cooperation, and their collective survival time increases. Thus, to resolve the social dilemma problems in virtual agents, we can make agents believable through the proposed neurotransmitter-based emotional model. This proposed work may help in developing nonplayer characters (NPCs) in games.
N-linked is the most common type of glycosylation which plays a significant role in identifying various diseases such as type I diabetes and cancer and helps in drug development. Most of the proteins cannot perform their biological and psychological functionalities without undergoing such modification. Therefore, it is essential to identify such sites by computational techniques because of experimental limitations. This study aims to analyze and synthesize the progress to discover N-linked places using machine learning methods. It also explores the performance of currently available tools to predict such sites. Almost seventy research articles published in recognized journals of the N-linked glycosylation field have shortlisted after the rigorous filtering process. The findings of the studies have been reported based on multiple aspects: publication channel, feature set construction method, training algorithm, and performance evaluation. Moreover, a literature survey has developed a taxonomy of N-linked sequence identification. Our study focuses on the performance evaluation criteria, and the importance of N-linked glycosylation motivates us to discover resources that use computational methods instead of the experimental method due to its limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.