BackgroundAnkylosing spondylitis (AS) is a chronic rheumatic and autoimmune disease. Little is known about the potential role of DNA methylation in the pathogenesis of AS. This study was undertaken to explore the potential role of DNA methylation in the genetic mechanism of AS.MethodsIn this study, we compared the genome-wide DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) between five AS patients and five healthy subjects, using the Illumina Infinium HumanMethylation450 BeadChip. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate the relevance of the identified differentially methylated genes for AS, using another independent sample of five AS patients and five healthy subjects.ResultsCompared with healthy controls, we detected 1915 differentially methylated CpG sites mapped to 1214 genes. The HLA-DQB1 gene achieved the most significant signal (cg14323910, adjusted P = 1.84 × 10–6, β difference = 0.5634) for AS. Additionally, the CpG site cg04777551 of HLA-DQB1 presented a suggestive association with AS (adjusted P = 1.46 × 10–3, β difference = 0.3594). qRT-PCR observed that the mRNA expression level of HLA-DQB1 in AS PBMCs was significantly lower than that in healthy control PBMCs (ratio = 0.48 ± 0.10, P < 0.001). Gene Ontology (GO) and KEGG pathway enrichment analysis of differentially methylated genes identified four GO terms and 10 pathways for AS, functionally related to antigen dynamics and function.ConclusionsOur results demonstrated the altered DNA methylation profile of AS and implicated HLA-DQB1 in the development of AS.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-017-1382-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.