In this work, we address the problem of providing fast and on-line households appliance load detection in a nonintrusive way from aggregate electric energy consumption data. Enabling on-line load detection is a relevant research problem as it can unlock new grid services such as demand-side management and raises interactivity in energy awareness possibly leading to more green behaviours.To this purpose, we propose an On-line-NILM (Non-Intrusive Load Monitoring) machine learning algorithm combining two methodologies: i) Unsupervised event-based profiling and ii) Markov chain appliance load modelling. The event-based part performs event detection through contiguous and transient data segments, events clustering and matching. The resulting features are used to build household-specific appliance models from generic appliance models. Disaggregation is then performed on-line using an Additive Factorial Hidden Markov Model from the generated appliance model parameters. Our solution is implemented on the cloud and tested with public benchmark datasets. Accuracy results are presented and compared with literature solutions, showing that the proposed solution achieves on-line detection with comparable detection performance with respect to non on-line approaches.
Nowadays, Non-Intrusive Load Monitoring techniques are sufficiently accurate to provide valuable insights to the end-users and improve their electricity behaviours. Indeed, previous works show that commonly used appliances (fridge, dishwasher, washing machine) can be easily disaggregated thanks to their abundance of electrical features. Nevertheless, there are still many ON/OFF devices (e.g. heaters, kettles, air conditioners, hair dryers) that present very poor power signatures, preventing their disaggregation with traditional algorithms. In this work, we propose a new online clustering method exploiting both operational features (peak power, duration) and external features (time of use, day of week, weekday/weekend) in order to recognize ON/OFF devices. The proposed algorithm is intended to support an existing disaggregation algorithm that is already able to classify at least 80% of the total energy consumption of the house. Thanks to our approach, we improved the performance of our existing disaggreation algorithm from 80% to 87% of the total energy consumption in the monitored houses. In particular, we found that 85% of the clusters were identified by only using operational features, while external features allowed us to identify the remaining 15% of the clusters. The algorithm needs to collect on average less than 40 operations to find a cluster, which demonstrates its applicability in the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.