In this work, we address the problem of providing fast and on-line households appliance load detection in a nonintrusive way from aggregate electric energy consumption data. Enabling on-line load detection is a relevant research problem as it can unlock new grid services such as demand-side management and raises interactivity in energy awareness possibly leading to more green behaviours.To this purpose, we propose an On-line-NILM (Non-Intrusive Load Monitoring) machine learning algorithm combining two methodologies: i) Unsupervised event-based profiling and ii) Markov chain appliance load modelling. The event-based part performs event detection through contiguous and transient data segments, events clustering and matching. The resulting features are used to build household-specific appliance models from generic appliance models. Disaggregation is then performed on-line using an Additive Factorial Hidden Markov Model from the generated appliance model parameters. Our solution is implemented on the cloud and tested with public benchmark datasets. Accuracy results are presented and compared with literature solutions, showing that the proposed solution achieves on-line detection with comparable detection performance with respect to non on-line approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.