IntroductionElucidating the relationship between habitat characteristics and population parameters is critical for effective conservation. Habitat suitability index (HSI) models are often used in wildlife management and conservation practice assuming that they predict species occurrence, abundance and demography. However, the relationship between vital rates such as survival and reproduction and habitat suitability has rarely been evaluated. In this study, we used pond occupancy and mark-recapture data to test whether HSI predicts occupancy, reproduction and survival probabilities. Our model species is the great crested newt (Triturus cristatus), a pond-breeding amphibian protected under the European Habitats Directive.ResultsOur results show a positive relationship between the HSI and reproduction probability, whereas pond occupancy and survival probabilities were not related to HSI. Mortality was found to be higher during breeding seasons when newts are in ponds than during terrestrial phases of adult newts.ConclusionHabitat suitability models are increasingly applied to wildlife management and conservation practice. We found that the HSI model predicted reproduction probability, rather than occurrence or survival. If HSI models indicate breeding populations rather than mere species occurrences, they may be used to identify habitats of higher priority for conservation. Future HSI models might be improved through modelling breeding populations vs. non-breeding populations rather than presence/absence data. However, according to our results the most suitable habitat is not necessarily the habitat where demographic performance is best. We recommend that conservation practitioners should use HSI models cautiously because there may be no direct link between habitat suitability, demography and consequently, population viability.Electronic supplementary materialThe online version of this article (doi:10.1186/s12983-015-0103-3) contains supplementary material, which is available to authorized users.
The development of microsatellite loci has become more efficient using next-generation sequencing (NGS) approaches, and many studies imply that the amount of applicable loci is large. However, few studies have sought to quantify the number of loci that are retained for use out of the thousands of sequence reads initially obtained. We analyzed the success rate of microsatellite loci development for three amphibian species using a 454 NGS approach on tetra-nucleotide motif-enriched species-specific libraries. The number of sequence reads obtained differed strongly between species and ranged from 19,562 for Triturus cristatus to 55,626 for Lissotriton helveticus, with 52,075 reads obtained for Calotriton asper. PHOBOS was used to identify sequences with tetra-nucleotide repeat motifs with a minimum repeat number of ten and high quality primer binding sites. Of 107 sequences for T. cristatus, 316 for C. asper and 319 for L. helveticus, we tested the amplification success, polymorphism, and degree of heterozygosity for 41 primer combinations each for C. asper and T. cristatus, and 22 for L. helveticus. We found 11 polymorphic loci for T. cristatus, 20 loci for C. asper, and 15 loci for L. helveticus. Extrapolated, the number of potentially amplifiable loci (PALs) resulted in estimated species-specific success rates of 0.15% (T. cristatus), 0.30% (C. asper), and 0.39% (L. helveticus). Compared with representative Illumina NGS approaches, our applied 454-sequencing approach on specifically enriched sublibraries proved to be quite competitive in terms of success rates and number of finally applicable loci.
Capture–mark–recapture (CMR) approaches are the backbone of many studies in population ecology to gain insight on the life cycle, migration, habitat use, and demography of target species. The reliable and repeatable recognition of an individual throughout its lifetime is the basic requirement of a CMR study. Although invasive techniques are available to mark individuals permanently, noninvasive methods for individual recognition mainly rest on photographic identification of external body markings, which are unique at the individual level. The re-identification of an individual based on comparing shape patterns of photographs by eye is commonly used. Automated processes for photographic re-identification have been recently established, but their performance in large datasets (i.e., > 1000 individuals) has rarely been tested thoroughly. Here, we evaluated the performance of the program AMPHIDENT, an automatic algorithm to identify individuals on the basis of ventral spot patterns in the great crested newt (Triturus cristatus) versus the genotypic fingerprint of individuals based on highly polymorphic microsatellite loci using GENECAP. Between 2008 and 2010, we captured, sampled and photographed adult newts and calculated for 1648 samples/photographs recapture rates for both approaches. Recapture rates differed slightly with 8.34% for GENECAP and 9.83% for AMPHIDENT. With an estimated rate of 2% false rejections (FRR) and 0.00% false acceptances (FAR), AMPHIDENT proved to be a highly reliable algorithm for CMR studies of large datasets. We conclude that the application of automatic recognition software of individual photographs can be a rather powerful and reliable tool in noninvasive CMR studies for a large number of individuals. Because the cross-correlation of standardized shape patterns is generally applicable to any pattern that provides enough information, this algorithm is capable of becoming a single application with broad use in CMR studies for many species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.