SUMMARYThis paper presents a new approach for imposing Dirichlet conditions weakly on non-fitting finite element meshes. Such conditions, also called embedded Dirichlet conditions, are typically, but not exclusively, encountered when prescribing Dirichlet conditions in the context of the eXtended finite element method (XFEM). The method's key idea is the use of an additional stress field as the constraining Lagrange multiplier function. The resulting mixed/hybrid formulation is applicable to 1D, 2D and 3D problems. The method does not require stabilization for the Lagrange multiplier unknowns and allows the complete condensation of these unknowns on the element level. Furthermore, only non-zero diagonal-terms are present in the tangent stiffness, which allows the straightforward application of state-of-the-art iterative solvers, like algebraic multigrid (AMG) techniques. Within this paper, the method is applied to the linear momentum equation of an elastic continuum and to the transient, incompressible Navier-Stokes equations. Steady and unsteady benchmark computations show excellent agreement with reference values.
SUMMARYWe have developed a new crack tip element for the phantom node method. In this method, a crack tip can be placed inside an element. Therefore cracks can propagate almost independent of the finite element mesh. We developed two different formulations for the three-node triangular element and four-node quadrilateral element, respectively. Although this method is well suited for the one-point quadrature scheme, it can be used with other general quadrature schemes. We provide some numerical examples for some static and dynamic problems.
Abstract. This contribution focusses on computational approaches for fluid structure interaction problems from several perspectives. Common driving force is the desire to handle even the large deformation case in a robust, efficient and straightforward way. In order to meet these requirements main subjects are on the one hand necessary improvements on coupling issues as well as on Arbitrary Lagrangian able fixed grid approaches and start the development of new such approaches. Some numerical examples are provided along the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.