The importance of unsymmetrical N-heterocyclic carbenes (uNHCs) as ligands in metal-catalyzed reactions is undeniable. While uNHCs show similar properties as compared with symmetrical NHCs, dissymmetrization allows for further fine-tuning. The introduction of chelatization, hemilability, bifunctionality, shielding effects, and chirality-transfer influences the catalyst's stability, reactivity, and selectivity, thus offering access to tailor-made systems including mono-and multidentate uNHC ligands. Based on selected examples, the structure-reactivity relationship of uNHCs employed in metal catalysts is presented. The focus is on catalytically active complexes, which either offer access to new applications or lead to significantly improved results in metal-catalyzed reactions.
Recently the interest for chiral olefin metathesis catalysts with respect to the synthesis of enantioenriched molecules, as well as enhanced product selectivities, has increased significantly.[1] For these kind of transformations, a range of molybdenum-catalysts containing one stereogen metal center have been very successful.[2] However, in comparison to these catalysts, ruthenium metathesis catalysts offer improved handling and stability. [3] A challenge with such catalysts is an efficient transfer of chirality from the N-heterocyclic carbene (NHC) to the metal center without substitution of the chlorine ligands, which are important for the reactivity.[4] Recently, we introduced chiral ruthenium metathesis catalysts of type 1, [5] which, compared to the catalysts of Grubbs et al. (e.g. 2), have a different orientation of the stabilizing N-aryl groups (Scheme 1) which arises from the monosubstitution in the NHC-backbone. [6] The C3 substituent in the NHC twists the framework and hinders rotation of the N-aryl substituent, while at the same time the absence of the C4 substitution allows a planar orientation for the mesitylene moiety. The resulting highly active catalyst was used for asymmetric ring-opening crossmetathesis providing excellent results.[5]Herein, we report a new type of chiral NHC-ligand in which rotation around the chirality transferring N-aryl bond is no longer possible, and the corresponding ruthenium metathesis catalysts. We decided to use a 2-substituted tetrahydroquinoline as the source of chirality, which is easy accessible via quinaldic acid 4. After esterification of 4 and hydration to rac-5, a kinetic enzymatic resolution leads to the desired key structure ent-5 in an overall yield of 41 % (! 99 % ee) (Scheme 2). [7] Protection of amine ent-5 (route A), ester saponification and subsequent amide coupling and deprotection, afforded amide 6. A further reduction with BH 3 ·SMe 2 led to the formation of diamine 7 in good yields. During this reaction a partial racemization and fluctuating ee-values were detected Scheme 1. Chiral ruthenium metathesis (pre)catalysts.
Chirale Olefinmetathesekatalysatoren sind von großer Bedeutung für die Synthese enantiomerenangereicherter Moleküle, wie auch zur Erhöhung von Produktselektivitäten. [1] Besonders erfolgreich sind Molybdän-Katalysatoren mit einem stereogenen Metallzentrum, [2] allerdings haben Ruthenium-Metathesekatalysatoren generell bessere Eigenschaften in Bezug auf Handhabbarkeit und Stabilität. [3] Eine Herausforderung bei solchen Katalysatoren besteht im Übertragen der chiralen Information vom N-heterocyclischen Carben (NHC) auf das Metallzentrum ohne Substitution der Chlorliganden, die für die Reaktivität des Katalysators wichtig sind.[4] Wir haben kürzlich chirale RutheniumMetathesekatalysatoren vom Typ 1 vorgestellt, [5] in denen im Unterschied zu den Grubbs-Katalysatoren wie z. B. 2 durch Monosubstitution im NHC-Rückgrat die beiden für die Stabilität wichtigen N-Aryl-Reste räumlich unterschiedlich angeordnet sind (Schema 1).[6] Der C3-Substituent im NHC sorgt für eine Verdrillung und gehinderte Rotation des einen N-Aryl-Restes, und gleichzeitig ermöglicht die fehlende C4-Substitution eine planare Anordnung der Mesitylengruppe. Daraus resultiert ein hochaktiver Katalysator, der bei der asymmetrischen Ringöffnungskreuzmetathese (AROCM) ausgezeichnete Resultate lieferte. [5] Wir berichten hier über einen neuen Typ eines chiralen NHC-Liganden, bei dem keine Rotation um die chiralitäts-übertragende N-Aryl-Bindung mehr möglich ist, sowie über die daraus erhältlichen Ruthenium-Metathesekatalysatoren. Als Chiralitätsquelle wählten wir ein 2-substituiertes Tetrahydrochinolin, das aus Chinaldinsäure 4 gut zugänglich ist. 4 wurde nach Veresterung zu rac-5 hydriert und durch eine enzymatische kinetische Racematspaltung in einer Gesamtausbeute von 41 % (! 99 % ee) in die gewünschte Schlüssel-verbindung ent-5 überführt (Schema 2). [7] Nach Schützung des Amins (Syntheseroute A) und Esterverseifung folgten die Amidkupplung und Entschützung zum Amid 6. Die anschließende Reduktion mit BH 3 ·SMe 2 lieferte in guten Ausbeuten das Diamin 7. Dabei waren al-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.