We used cortex-specific deletion of the transcription factor gene COUP-TFI (also known as Nr2f1) in mice to demonstrate previously unknown fundamental roles for it in patterning mammalian neocortex into areas. The highest COUP-TFI expression is observed in the cortical progenitors and progeny in parietal and occipital cortex that form sensory areas, and the lowest expression was observed in frontal cortex that includes motor areas. Cortical deletion of COUP-TFI resulted in massive expansion of frontal areas, including motor, to occupy most of neocortex, paralleled by marked compression of sensory areas to caudal occipital cortex. These area patterning changes are preceded and paralleled by corresponding changes in molecular markers of area identity and altered axonal projections to maintain patterned area-specific input and output connections. We conclude that COUP-TFI is required for balancing patterning of neocortex into frontal/motor and sensory areas by acting in its expression domain to repress frontal/motor area identities and to specify sensory area identities.
Genetic studies of neocortical area patterning are limited, because mice deficient for candidate regulatory genes die before areas emerge and have other complicating issues. To define roles for the homeodomain transcription factor EMX2, we engineered nestin-Emx2 transgenic mice that overexpress Emx2 in cortical progenitors coincident with expression of endogenous Emx2 and survive postnatally. Cortical size, lamination, thalamus, and thalamocortical pathfinding are normal in homozygous nestin-Emx2 mice. However, primary sensory and motor areas are disproportionately altered in size and shift rostrolaterally. Heterozygous transgenics have similar but smaller changes. Opposite changes are found in heterozygous Emx2 knockout mice. Fgf8 expression in the commissural plate of nestin-Emx2 mice is indistinguishable from wild-type, but Pax6 expression is downregulated in rostral cortical progenitors, suggesting that EMX2 repression of PAX6 specification of rostral identities contributes to reduced rostral areas. We conclude that EMX2 levels in cortical progenitors disproportionately specify sizes and positions of primary cortical areas.
Studies of area patterning of the neocortex have focused on primary areas, concluding that the primary visual area, V1, is specified by transcription factors (TFs) expressed by progenitors. Mechanisms that determine higher-order visual areas (VHO) and distinguish them from V1 are unknown. We demonstrated a requirement for thalamocortical axon (TCA) input by genetically deleting geniculocortical TCAs and showed that they drive differentiation of patterned gene expression that distinguishes V1 and VHO. Our findings suggest a multistage process for area patterning: TFs expressed by progenitors specify an occipital visual cortical field that differentiates into V1 and VHO; this latter phase requires geniculocortical TCA input to the nascent V1 that determines genetic distinctions between V1 and VHO for all layers and ultimately determines their area-specific functional properties.
Abstract.Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.