Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the right motor cortex, the right anterior insula, and the left cerebellum whereas the opposite response pattern emerged during a speech task. In contrast to the hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. These findings corroborate the assumption that the left insula supports the coordination of speech articulation. Similarly, the right insula might mediate temporo-spatial control of vocal tract musculature during overt singing. Both speech and melody production require the integration of sound structure or tonal patterns, respectively, with a speaker's emotions and attitudes. Considering the widespread interconnections with premotor cortex and limbic structures, the insula is especially suited for this task.
These data provide evidence for two levels of speech motor control bound, most presumably, to motor preparation and execution processes. They also help to explain clinical observations such as an unimpaired or even accelerated speaking rate in Parkinson disease and slowed speech tempo, which does not fall below a rate of 3 Hz, in cerebellar disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.