In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.
Transfer learning (TL) has been widely utilized to address the lack of training data for deep learning models. Specifically, one of the most popular uses of TL has been for the pre-trained models of the ImageNet dataset. Nevertheless, although these pre-trained models have shown an effective performance in several domains of application, those models may not offer significant benefits in all instances when dealing with medical imaging scenarios. Such models were designed to classify a thousand classes of natural images. There are fundamental differences between these models and those dealing with medical imaging tasks regarding learned features. Most medical imaging applications range from two to ten different classes, where we suspect that it would not be necessary to employ deeper learning models. This paper investigates such a hypothesis and develops an experimental study to examine the corresponding conclusions about this issue. The lightweight convolutional neural network (CNN) model and the pre-trained models have been evaluated using three different medical imaging datasets. We have trained the lightweight CNN model and the pre-trained models with two scenarios which are with a small number of images once and a large number of images once again. Surprisingly, it has been found that the lightweight model trained from scratch achieved a more competitive performance when compared to the pre-trained model. More importantly, the lightweight CNN model can be successfully trained and tested using basic computational tools and provide high-quality results, specifically when using medical imaging datasets.
This article presents a tracking control design for two-link robot manipulators. To achieve robust tracking control performance, a super-twisting sliding mode control (STSMC) is derived. The stability of the system based on the proposed approach is proved based on the Lyapunov theorem. However, one problem with the designed STSMC is to properly set its parameters during the design. Therefore, it is proposed a social spider optimization (SSO) to tune these design parameters to improve the dynamic performance of the robot manipulator controlled considering STSMC. The performance of the STSMC approach based on SSO is compared to that based on particle swarming optimization (PSO) in terms of dynamic performance and robustness characteristics. The effectiveness of the proposed optimal controllers is verified by simulations within the MATLAB software. It is verified that the performance given by SSO-based STSMC outperforms that resulting from PSO-based STSMC. The experimental results are conducted based on LabVIEW 2019 software to validate the numerical simulation.
This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.