Square skin wounds can heal to form a stellar scar with four protrusions at the four angles, whereas circular wounds can heal to form an ellipsoid scar. It is not clear why these differences occur and the aim of the present study was to clarify this phenomenon. Two square or circular full-thickness skin wounds were made on the dorsum of mice, and covered with hydrocolloid dressing. They were observed from day 0 to 15 after wounding, and used to prepare paraffin sections stained with anti-alpha-smooth muscle actin antibody to detect myofibroblasts. The square wound was transiently enlarged by edema and skin tension on day 3, at which time the angles became round, and thus the square form became more circular. Thereafter, the wound contracted rapidly and the circular form was maintained until day 11. On day 11 distinct angles appeared where the scar formation had progressed further, and there were fewer myofibroblasts than in any other section. A stellar scar with protrusions from the four angles was formed on day 15, when myofibroblasts almost disappeared in the protrusions. This indicates that due to the earlier disappearance of myofibroblasts and earlier scarring in the angles of the square wound, the scar angle cannot be pulled into the center of the wound but residual myofibroblasts on the side can pull the side into the center due to myofibroblastic contraction and consequently a stellar scar is formed. Thus, the earlier disappearance of myofibroblasts in the angles is very important for the formation of stellar scars.
Background:
Manual lymph drainage (MLD) is one of the common treatments for breast cancer-related lymphedema (BCRL). Although the primary goal of MLD is to drain the excessive fluid accumulated in the affected upper limb and trunk to an area of the body that drains usually, the use of MLD is decided based on swelling and subjective symptoms, without assessing whether there is fluid accumulated in the affected region. The purpose of this study was to examine truncal fluid distribution in a sample of BCRL patients and investigate any correlation between such fluid distribution and swelling or subjective symptoms.
Methods and Results:
An observational study was conducted with 13 women who had unilateral, upper extremity BCRL. Fluid distribution was evaluated by using two magnetic resonance imaging (MRI) sequences: half-Fourier acquisition single-shot turbo spin echo and three-dimensional double-echo steady-state. The presence of swelling was determined by lymphedema therapists, and subjective symptoms were measured by using a visual analog scale. On MRI, no participants had any free water signals in the trunk. However, seven had swelling and all 13 had some kind of subjective symptoms on the affected side of their trunk.
Conclusions:
These results suggest that swelling and subjective symptoms do not correlate with the presence of truncal fluid. For such cases, a different approach than MLD may be needed to address truncal swelling and related subjective symptoms. Checking for the presence of fluid in the truncal region may help MLD be used more appropriately.
Background:
Lymphedema often affects the trunk after breast cancer surgery. Measuring volume baseline can help detect lymphedema-related changes early, thereby allowing for early intervention efforts. However, there is no quantitative method for detecting truncal lymphedema. As a preliminary investigation into the development of a new method for measuring truncal lymphedema, this study aimed to investigate the reliability and define the minimal detectable change (MDC) in posterior truncal thickness using a three-dimensional (3D) scanning system.
Methods and Results:
This observational study included 21 women who had undergone a mastectomy for breast cancer. The 3D images of every subject's trunk were captured by a handheld 3D scanner at two time points. The acquired 3D images were used to calculate the differences in thickness between the affected and unaffected sides at eight points on the trunk. The reliability was determined by checking for agreement between the trials (intraclass correlation coefficient) and by investigating the presence of systematic bias between the measurement error and true value (Bland–Altman analysis). Then, the MDC was calculated. For 14 of the 21 participants, 3D images without missing data at both time points were obtained. Analysis indicated that there was no systematic bias regarding the mean value at the seven body points. Fair-to-excellent reliability was shown at the five points in the middle of the trunk (MDC: 4.14–9.79 mm). The other three points (at the top and bottom of the trunk) had limited reliability.
Conclusions:
The 3D scanning system effectively measured the differences in thickness between the affected and unaffected sides of participants' posterior trunks, with fair-to-excellent reliability in the middle of the trunk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.