bCounterselection systems facilitate marker-free genetic modifications in microbes by enabling positive selections for both the introduction of a marker gene into the microbe and elimination of the marker from the microbe. Here we report a counterselection system for Geobacillus kaustophilus HTA426, established through simultaneous disruption of the pyrF and pyrR genes. The pyrF gene, essential for pyrimidine biosynthesis and metabolization of 5-fluoroorotic acid (5-FOA) to toxic metabolites, was disrupted by homologous recombination. The resultant MK54 strain (⌬pyrF) was auxotrophic for uracil and resistant to 5-FOA. MK54 complemented with pyrF was prototrophic for uracil but insensitive to 5-FOA in the presence of uracil. To confer 5-FOA sensitivity, the pyrR gene encoding an attenuator to repress pyrimidine biosynthesis by sensing uracil derivatives was disrupted. The resultant MK72 strain (⌬pyrF ⌬pyrR) was auxotrophic for uracil and resistant to 5-FOA. MK72 complemented with pyrF was prototrophic for uracil and 5-FOA sensitive even in the presence of uracil. The results suggested that pyrF could serve as a counterselection marker in MK72, which was demonstrated by efficient marker-free integrations of heterologous -galactosidase and ␣-amylase genes. The integrated genes were functionally expressed in G. kaustophilus and conferred new functions on the thermophile. This report describes the first establishment of a pyrF-based counterselection system in a Bacillus-related bacterium, along with the first demonstration of homologous recombination and heterologous gene expression in G. kaustophilus. Our results also suggest a new strategy for establishment of counterselection systems.
Geobacillus kaustophilus HTA426, a thermophilic Bacillus-related species, utilizes some inositol stereoisomers, including myo-, D-chiro-and scyllo-inositols (MI, DCI and SI), as sole carbon sources. Within its genome are three paralogous genes that possibly encode inositol dehydrogenase. These genes are located in tandem within a large gene cluster containing an almost complete set of iol genes homologous to genes involved in inositol catabolism in Bacillus subtilis. Each of the three plausible inositol dehydrogenases was purified as a His 6 -tag fusion. The enzymes exhibited thermophilic activity, each with its own characteristic specificity for the inositol stereoisomers and cofactors. Northern blot and primer extension analyses revealed that the three enzymes were encoded by the same 5 kb polycistronic transcript and were induced simultaneously in the presence of MI. HTA426 was subjected to ethyl methanesulfonate (EMS) mutagenesis to isolate a mutant strain, PS8, which was not able to utilize MI. In PS8, inositol dehydrogenase activity was abolished along with the 5 kb transcript, suggesting that any of the three enzymes supports MI-dependent growth. Analysis of metabolites in HTA426 cells grown in the presence of MI revealed that substantial amounts of DCI and SI appeared intracellularly during the stationary phase, while only MI was present in PS8 cells, suggesting that interconversion of inositol stereoisomers may involve these three enzymes.
Members of glycoside hydrolase family 1 (GH1) cleave glycosidic linkages with a variety of physiological roles. Here we report a unique GH1 member encoded in the genome of Bifidobacterium adolescentis ATCC 15703. This enzyme, BAD0156, was identified from over 2,000 GH1 sequences accumulated in a database by a genome mining approach based on a motif sequence. A recombinant BAD0156 protein was characterized to confirm that this enzyme alone specifically hydrolyzes p-nitrophenyl-α-L-arabinofuranoside among the 24 p-nitrophenyl-glycosides examined. Among natural glycosides, α-1,5-linked arabino-oligosaccharides served as substrates, but arabinan, debranched arabinan, arabinoxylan, and arabinogalactan did not. A time course analysis of arabino-oligosaccharide hydrolysis indicated that BAD0156 is an exo-acting enzyme. These results suggest that BAD0156 is an α-L-arabinofuranosidase. This is the first report of a GH1 enzyme that acts specifically on arabinosides, providing information on GH1 substrate specificity.
Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma Kagura-2 cells overexpress c-myc oncogene, which has been implicated in both cell proliferation and apoptosis. To gain an insight into the molecular mechanism of AFB1 hepatocarcinogenesis, Kagura-2 cell death induced by an anticancer agent, sodium 5,6-benzylideneascorbate (SBA), was studied. The dying cells showed typical characteristics of apoptosis such as nuclear fragmentation, chromosomal condensation and DNA fragmentation by internucleosomal cleavage. The apoptotic death was inhibited by the addition of cycloheximide (CHX), suggesting the requirement for new protein synthesis. However, the induction of Ca2+/Mg2+-dependent endonuclease activities and the alteration of c-myc gene expression in SBA-induced apoptosis were hardly detected. In addition, SBA-induced apoptosis was markedly suppressed by dexamethasone (DEX), insulin and P3 fraction, which was separated from the conditioned medium of Kagura-2 cells (K2CM) by Sephadex G-200 column chromatography and could stimulate Kagura-2 cell growth. P3 fraction also inhibited DNA fragmentation of Kagura-2 cells induced by serum deprivation. These results suggest that SBA induces apoptosis through the interference with the function of growth/survival factors acting in an autocrine and/or a paracrine mechanism or their signal transduction pathways. It is also possible that growth/survival factors play a critical role in the multistep hepatocarcinogenesis of AFB1 together with the deregulated expression of c-myc oncogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.