SummarySalmonella phosphothreonine lyase SpvC inactivates the dual-phosphorylated host mitogenactivated protein kinases (MAPK) through b-elimination. While SpvC can be secreted in vitro by both Salmonella pathogenicity island (SPI)-1 and SPI-2 type III secretion systems (T3SSs), translocation of this protein into the host cell cytosol has only been demonstrated by SPI-2 T3SS. In this study, we show that SpvC can be delivered into the host cell cytoplasm by both SPI-1 and SPI-2 T3SSs. Dephosphorylation of the extracellular signal-regulated protein kinases (ERK) was detected in an SPI-1 T3SS-dependent manner 2 h post infection. Using a mouse model for Salmonella enterocolitis, which was treated with streptomycin prior to infection, we observed that mice infected with Salmonella enterica serovar Typhimurium strains lacking the spvC gene showed pronounced colitis when compared with mice infected with the wild-type strain 1 day after infection. The effect of SpvC on the development of colitis was characterized by reduced mRNA levels of the pro-inflammatory cytokines and chemokines, and reduced inflammation with less infiltration of neutrophils. Furthermore, the reduction in inflammation by SpvC resulted in increased bacterial dissemination in spleen of mice infected with Salmonella. Collectively, our findings suggest that SpvC exerts as an antiinflammatory effector and the attenuation of intestinal inflammatory response by SpvC is involved in systemic infection of Salmonella.
Mitogen-activated protein (MAP) kinase plays important roles in the establishment of long-term potentiation both in vitro and in living animals. MAP kinase is activated in response to a broad range of stimuli, including calcium influx through NMDA receptor and L-type calcium channel, cAMP, and neurotrophins. To investigate the role of Ras in the activation of MAP kinase and cAMP response element-binding protein (CREB) in hippocampal neurons, we inhibited Ras function by overexpressing a Ras GTPase-activating protein, Gap1 m , or dominant negative Ras by means of adenovirus vectors. Gap1 m expression almost completely suppressed MAP kinase activation in response to NMDA, calcium ionophore, membrane depolarization, forskolin, and brain-derived neurotrophic factor (BDNF). Dominant negative Ras also showed similar effects. On the other hand, Rap1GAP did not significantly inhibit the forskolin-induced activation of MAP kinase. In contrast to MAP kinase activation, the inactivation of Ras activity did not inhibit significantly NMDA-induced CREB phosphorylation, whereas BDNFinduced CREB phosphorylation was inhibited almost completely. These results demonstrate that Ras transduces signals elicited by a broad range of stimuli to MAP kinase in hippocampal neurons and further suggest that CREB phosphorylation depends on multiple pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.