Background A multicenter investigation of neonate exposure to potentially harmful excipients (PHEs) in neonatal intensive care units (NICUs) in Japan has not been conducted. Methods A multicenter nationwide observational study was conducted. Neonate patient demographic data and information on all medicines prescribed and administered during hospitalization on 1 day between November 2019 and March 2021 were extracted from the medical records. Nine PHEs, paraben, polysorbate 80, propylene glycol, benzoates, saccharin sodium, sorbitol, ethanol, benzalkonium chloride, and aspartame, were selected. PHEs were identified from the package insert and the Interview Form. The quantitative daily exposure was calculated if quantitative data were available for each product containing the PHE. Results Prescription data was collected from 22 NICUs in Japan. In total, 343 neonates received 2360 prescriptions for 426 products containing 228 active pharmaceutical ingredients. PHEs were found in 52 (12.2%) products in 646 (27.4%) prescriptions for 282 (82.2%) neonates. Benzyl alcohol, sodium benzoates, and parabens were the most common PHEs in parenteral, enteral, and topical formulations, respectively. Quantitative analysis showed that 10 (10%), 38 (42.2%), 37 (94.9%), and 9 (39.1%) neonates received doses exceeding the acceptable daily intake of benzyl alcohol, polysorbate 80, propylene glycol, and sorbitol, respectively. However, due to the lack of quantitative information for all enteral and topical products, accurate daily PHE exposure could not be quantified. Conclusions Neonates admitted to NICUs in Japan were exposed to PHEs, and several of the most commonly prescribed medicines in daily clinical practice in NICUs contained PHEs. Neonate PHE exposure could be reduced by replacing these medicines with available PHE-free alternatives.
Background: The need for a large volume of serum sample significantly reduces the feasibility of neonatal pharmacokinetic studies in daily practice, which must often rely on scavenged or opportunistic sampling. This problem is most apparent in preterm newborns, where ethical and practical considerations prohibit the collection of large sample volumes. Most of the fluconazole analysis assays published thus far required a minimum serum sample of 50 to 100 μL for a single assay. The purpose of the present study was to develop and validate a sensitive method requiring a smaller sample volume (10 μL) to satisfy clinically relevant research requirements. Methods: Following simple protein precipitation and centrifugation, the filtrated supernatant was injected into a liquid chromatography system and separated with a C18 reverse-phase column. Fluconazole and the internal standard (IS, fluconazole-d4) were detected and quantified using tandem mass spectrometry. The method was validated with reference to the Food and Drug Administration's Guidance for Industry. Accuracy and precision were evaluated at six quality control concentration levels (ranging from 0.01 to 100 μg/mL). Results: Investigated calibration curves were linear in the 0.01-100 μg/mL range. Intra-and inter-day accuracy (− 7.7 to 7.4%) and precision (0.3 to 6.0%) were below 15%. The calculated limit of detection and the lower limit of quantification (LLOQ) was 0.0019 μg/mL and 0.0031 μg/mL, respectively. Fluconazole in the prepared samples was stable for at least 4 months at − 20°C and − 80°C. This method was applied to analyze 234 serum samples from ten neonates who received fosfluconazole, a water-soluble phosphate prodrug of fluconazole which converts to fluconazole in the body, as part of a pharmacokinetic study using daily scavenged laboratory samples. The median (range) concentration up to 72 h after fosfluconazole administration was 2.9 (0.02 to 26.8 μg/mL) μg/mL, which was within the range of the calibration curve. Conclusion: Fluconazole was able to be detected in an extremely small volume (10 μL) of serum from neonates receiving fosfluconazole. The method presented here can be used to quantify fluconazole concentrations for pharmacokinetic studies of the neonatal population by using scavenged samples.
Background: Vancomycin (VCM) is useful for treating methicillin-resistant Staphylococcus aureus. In infants, calibrating the initial VCM dose is difficult, and many regimens have been proposed. For instance, our center uses the VCM regimen recommended for infants in the 2012-13 Nelson's Pediatric Antimicrobial Therapy. Nonetheless, our experience has shown that the initial VCM trough concentrations were frequently off target. We therefore analyzed the data on the initial VCM trough concentration in infant patients at our center. Methods: The study subjects were inborn infants born between July 2014 and June 2019 who were given VCM at earlier than day 60 in the neonatal intensive care unit. The primary outcome was the initial VCM trough concentration. The patients were divided into three groups by VCM trough concentration: <10, 10-15, and >15 mg/L. We also estimated VCM trough concentration by one method using Monte Carlo simulation, based on Nelson regimen dosage. Results: Thirty-three patients were analyzed. The number of patients with <10, 10-15, and >15 mg/L was 24, 4, and 5, respectively. There was no significant difference in clinical characteristics between <10 versus 10-15 and 10-15 versus >15 mg/L. The numbers of patients with <10, 10-15, and >15 mg/L in the simulation were 26, 6, and 1, respectively. Conclusions: Most initial VCM trough concentrations were below the target. We could not find any significant clinical characteristics, which affected VCM trough concentration. Increasing the VCM dosage of the Nelson regimen with simulation should therefore be considered.
Invasive fungal infection is an important cause of mortality and morbidity in very preterm or very-low-birth-weight infants. In order to limit the risk of invasive fungal infections in this population, the administration of fluconazole is generally recommended for extremely low-birth-weight infants admitted to a neonatal intensive care unit with a Candida species colonization prevalence rate of >10%, under the guidelines of the Infectious Diseases Society of America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.