IL-17 is a cytokine that induces neutrophil-mediated inflammation, but its role in protective immunity against intracellular bacterial infection remains unclear. In the present study, we demonstrate that IL-17 is an important cytokine not only in the early neutrophil-mediated inflammatory response, but also in T cell-mediated IFN-γ production and granuloma formation in response to pulmonary infection by Mycobacterium bovis bacille Calmette-Guérin (BCG). IL-17 expression in the BCG-infected lung was detected from the first day after infection and the expression depended on IL-23. Our observations indicated that γδ T cells are a primary source of IL-17. Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-γ in comparison to those from wild-type mice 4 wk after BCG infection. Impaired granuloma formation was also observed in the infected lungs of IL-17-deficient mice, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag. These data suggest that IL-17 is an important cytokine in the induction of optimal Th1 response and protective immunity against mycobacterial infection.
IL-17A is originally identified as a proinflammatory cytokine that induces neutrophils. Although IL-17A production by CD4+ Th17 T cells is well documented, it is not clear whether IL-17A is produced and participates in the innate immune response against infections. In the present report, we demonstrate that IL-17A is expressed in the liver of mice infected with Listeria monocytogenes from an early stage of infection. IL-17A is important in protective immunity at an early stage of listerial infection in the liver because IL-17A-deficient mice showed aggravation of the protective response. The major IL-17A-producing cells at the early stage were TCR γδ T cells expressing TCR Vγ4 or Vγ6. Interestingly, TCR γδ T cells expressing both IFN-γ and IL-17A were hardly detected, indicating that the IL-17A-producing TCR γδ T cells are distinct from IFN-γ-producing γδ T cells, similar to the distinction between Th17 and Th1 in CD4+ T cells. All the results suggest that IL-17A is a newly discovered effector molecule produced by TCR γδ T cells, which is important in innate immunity in the liver.
Granulomas play an essential role in the sequestration and killing of mycobacteria in the lung; however, the mechanisms of their development and maturation are still not clearly understood. IL-17A is involved in mature granuloma formation in the mycobacteria-infected lung. Therefore, IL-17A gene-knockout (KO) mice fail to develop mature granulomas in the Mycobacterium bovis bacille Calmette-Guérin (BCG)-infected lung. This study analyzed the mechanism of IL-17A–dependent mature granuloma formation in the mycobacteria-infected lung. The IL-17A KO mice showed a normal level of nascent granuloma formation on day 14 but failed to develop mature granulomas on day 28 after the BCG infection in the lung. The observation implies that IL-17A is required for the maturation of granuloma from the nascent to mature stage. TCR γδ T cells expressing TCR Vγ4 or Vγ6 were identified as the major IL-17A–producing cells that resided in the BCG-induced lung granuloma. The adoptive transfer of the IL-17A–producing TCR γδ T cells reconstituted granuloma formation in the IL-17A KO mice. The expression of ICAM-1 and LFA-1, which are adhesion molecules important in granuloma formation, decreased in the lung of the BCG-infected IL-17A KO mice, and their expression was induced on BCG-infected macrophages in coculture with IL-17A–producing TCR γδ T cells. Furthermore, IL-17A KO mice showed not only an impaired mature granuloma formation, but also an impaired protective response to virulent Mycobacterium tuberculosis. Therefore, IL-17A produced by TCR γδ T cells plays a critical role in the prevention of M. tuberculosis infection through the induction of mature granuloma formation.
Patients with psoriasis are frequently complicated with metabolic syndrome; however, it is not fully understood how obesity and dyslipidemia contribute to the pathogenesis of psoriasis. To investigate the mechanisms by which obesity and dyslipidemia exacerbate psoriasis using murine models and neonatal human epidermal keratinocytes (NHEKs), we used wild-type and Apoe-deficient dyslipidemic mice, and administered a high-fat diet for 10 weeks to induce obesity. Imiquimod was applied to the ear for 5 days to induce psoriatic dermatitis. To examine the innate immune responses of NHEKs, we cultured and stimulated NHEKs using IL-17A, TNF-α, palmitic acid, and leptin. We found that obesity and dyslipidemia synergistically aggravated psoriatic dermatitis associated with increased gene expression of pro-inflammatory cytokines and chemokines. Treatment of NHEKs with palmitic acid and leptin amplified pro-inflammatory responses in combination with TNF-α and IL-17A. Additionally, pretreatment with palmitic acid and leptin enhanced IL-17A-mediated c-Jun N-terminal kinase phosphorylation. These results revealed that obesity and dyslipidemia synergistically exacerbate psoriatic skin inflammation, and that metabolic-disorder-associated inflammatory factors, palmitic acid, and leptin augment the activation of epidermal keratinocytes. Our results emphasize that management of concomitant metabolic disorders is essential for preventing disease exacerbation in patients with psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.