This paper presents the synthesis of two cluster compounds {(NH4)2[Co(H2O)6]2V10O28·4H2O (C1) and (NH4)2[Ni(H2O)6]2V10O28·4H2O (C2)} which were obtained as single crystals suitable for XRD analysis that revealed their crystallization in the monoclinic (C2/c) and triclinic (P-1) space groups, respectively. Additionally, C1 and C2 were characterized using CHN analysis and FT-IR spectroscopy and their thermal decomposition mechanisms were investigated. The antibacterial activities of both compounds were determined against three human pathogenic bacterial strains {Bacillus cereus ATCC 33,018, Escherichia coli O157:H7 and Pseudomonas aeruginosa ATCC 9027} and one phytopathogenic bacterial strain {Ralstonia solanacearum}, while drug standards {chloramphenicol and streptomycin} were used as control. The inhibitory activity and the minimum inhibitory concentration (MIC) values of the tested compounds clearly indicated higher antibacterial activities of the nickel compound against B. cereus ATCC 33,018, E. coli O157 and R. solanacearum with MIC values of 3.150, 3.150 and 6.300 mg/ml, respectively. On the other hand, (NH4)2[Co(H2O)6]2V10O28·4H2O exhibited higher antibacterial activity against P. aeruginosa ATCC 9027 (MIC value of 6.300 mg/ml) in comparison to the nickel analog. In general, the measured activities are lower than that obtained for the standards except for the higher activity given by C2 in comparison to streptomycin against the R. solanacearum strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.