A new thiosemicarbazone ligand was synthesized and characterized using spectroscopic techniques (UV-Vis and IR) and synchrotron x-ray powder diffraction. With M2+ = Mn2+, Zn2+ and Cd2+, coordination compounds of the type (M[L]2) were isolated. In the presence of sodium dithiocarbamate salts (NadiEtdtc.3H2O = sodium diethyldithiocarbamate trihydrate and Napipdtc = sodium piperidinedithiocarbamate), Zn2+ and Cd2+ were able to form ternary octahedral complexes where each metal binds a deprotonated (thiosemicarbazone) ligand, a monobasic dithiocarbamate ligand and a water molecule. In vitro biological evaluation tests of the free HL ligand and its metal complexes against selected fungal and bacterial cultures were performed. Compared with HL, the complexes displayed enhanced biological activities and ternary Zn (II) complexes displayed comparable antibacterial activities to the chloramphenicol standard.
We have investigated the electronic structures of axially oxo functionalized titanylphthalocyanine (TiOPc) on Ag(111) by X-ray and ultraviolet photoelectron spectroscopy, two-photon photoemission, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. Furthermore, we use complementary data of TiOPc on graphite and planar copper phthalocyanine (CuPc) on Ag(111) for a comparative analysis. Both molecules adsorb on Ag(111) in a parallel orientation to the surface, for TiOPc with an oxygen-up configuration. The interaction of nitrogen and carbon atoms with the substrate is similar for both molecules while the bonding of the titanium atom to Ag(111) in the monolayer is found to be slightly more pronounced than in the CuPc case. Ultraviolet photoemission spectroscopy reveals an occupation of the lowest unoccupied molecular orbital (LUMO) level in monolayer thick TiOPc on Ag(111) related to the interaction of the molecules and the silver substrate. This molecule-metal interaction also causes an upward shift of the Ag(111) Shockley state that is transformed into an unoccupied interface state with energies of 0.23 and 0.33 eV for the TiOPc mono-and bilayer, respectively, at the Brillouin zone center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.