The objective of this paper is to investigate the mechanical response of EN08 steel at quasi-static and dynamic strain rates. Uniaxial tensile tests under quasi-static regime (from 0.0015 s−1 to 0.15 s−1) are conducted on EN08 steel at a range of temperatures between 298 K and 923 K. Dynamic compression tests are also performed by using a drop hammer and by considering different masses and heights to study the material response at strain rates up to 800 s−1. Through the stress-strain responses of EN08 steel, a strong dependency of the yield stress as well as the ultimate strength on the strain rate and temperature is recognized. Furthermore, the strain hardening is highly affected by the increase of temperature at all levels of strain rate. The microstructure of the steel is also examined at a fracture by using SEM images to quantify the density of microdefects and define the damage evolution by using an energy-based damage model.
In this paper, shear strength of fiber reinforced recycled concrete was investigated. A Self Consolidated Concrete (SCC) matrix with 100% coarse recycled aggregate and different types of fibers were used in the study. Steel (3D and 5D), synthetic and hybrid fibers with a volume fraction of 0.75% were added to the concrete matrix to prepare eight beams. In addition, two beams were cast without fibers as control specimens. All beams were prepared without shear reinforcement and were tested to evaluate concrete contribution to the shear capacity. In addition, optical images were captured to allow for full-field displacement measurements using Digital Image Correlation (DIC). The results showed about 23.44–64.48% improvement in the average concrete shear capacity for fiber-reinforced beams when compared to that of the control specimens. The percentage improvement was affected by fiber type and the steel fiber beams achieved the best performance. The addition of the fiber delayed the crack initiation and improved the post-cracking and ductile behavior of all beams. Moreover, the experimental results were compared to those predicted by codes and proposed equations found in the literature for concrete strength with and without fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.