Although both antioxidant capacity and oxidative conversion (hazard) are important in food and bioanalytical chemistry, there is considerable confusion in the literature between the results of these two types of assays. After the generation of ROS in the medium via Fe(III)-H₂O₂ reaction, attenuation of total oxidative conversion (TOC; as measured by thiobarbituric acid-reactive substances (TBARS) and N,N-dimethyl-p-phenylenediamine (DMPD) assays) was tested for possible correlation with the total antioxidant capacity (TAC; as measured by cupric reducing antioxidant capacity (CUPRAC) and trolox equivalent antioxidant capacity (ABTS/TEAC) assays) of the introduced antioxidant sample. The inverse relationship between oxidative conversion and antioxidant capacity was processed to establish a curvilinear relationship between the absolute values of TAC increments and TOC decrements as a function of added antioxidant concentration. This simple relationship may form a bridge between the two diverse disciplines of medical biochemistry and food analytical chemistry mainly using TOC and TAC results, respectively.
The optical sensor for "tea catechins" was built by immobilizing 2,2'-(1,4-phenylenedivinylene)bis-8-hydroxyquinoline (PBHQ) on TiO₂ nanoparticles (NPs). The sensor worked by "indophenol blue" dye formation on PBHQ-immobilized TiO₂ NPs as a result of p-aminophenol (PAP) autoxidation with dissolved O₂ at pH 10. Among quercetin, rutin, naringenin, naringin, gallic acid, caffeic acid, ferulic acid, p-coumaric acid, catechin, epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, and trolox, only catechin group antioxidants delayed the color formation on NPs, as measured by the reflectance signal at 710 nm. For quantitative analysis, reflectance signal versus time was recorded, and the difference between the areas under curve (ΔAUC) in the presence and absence of catechin was correlated (r = 0.98) to catechin concentration. The selectivity of the sensor for catechins was shown in tea infusions compared to other plant extracts and was ascribed to the nonplanar structure of catechin interfering with the formation of perfectly conjugated indophenol blue on TiO₂ surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.