Introduction: Gestational vascular complications (GVCs), including gestational hypertension and preeclampsia, are leading causes of maternal morbidity and mortality. Elevated levels of extracellular vesicles (EVs), in GVC have been linked to vascular injury. This study aims to characterize placental and circulating EV miRNA in GVCs, and explores the involvement of EV-miRNA in GVC, and whether they may be used to distinguish between placental and maternal pathologies.Methods: Blood samples were obtained from 15 non-pregnant (NP), 18 healthy-pregnant (HP), and 23 women with GVC during the third trimester. Placental sections were obtained after caesarian section. Platelet-poor-plasma (PPP) and EV pellets were characterized: EV size/concentration, protein content and miRNA expression were measured by nanoparticle tracking analysis, western blot, nano-string technology and RT-PCR. The effects of EVs on trophoblasts and EC miRNA expression were evaluated.Results: Higher EVs concentrations were observed in HP-PPP and GVC-PPP (p < 0.0001) compared to the NP-PPP. The concentration of large EVs (>100 nm) was higher in PPP and EV pellets of HP and GVC compared to the NP group. EV pellets of pregnant women demonstrated lower expression of exosomal markers CD63/CD81 compared to NP-EVs. GVC-EVs expressed more human placental lactogen (hPL) hormone than HP-EVs, reflecting their placental origin. Screening of miRNAs in EV pellets and in PPP identified certain miRNAs that were highly expressed only in EVs pellets of the HP (13%) and GVC groups (15%), but not in the NP group. Differences were detected in the expression of hsa-miR-16-5p, hsa-miR-210, and hsa-miR-29b-3p. The expression of hsa-miR-16-5p and hsa-miR-210 was low in EV pellets obtained from NP, higher in HP-EVs, and significantly lower in GVC-EVs. Except for hsa-miR-29b-3p, which was upregulated in GVC, no significant differences were found in the levels of other miRNAs in placental sections. Exposure to GVC-EVs resulted in higher expression of hsa-miR-29b-3p compared to cells exposed to HP-EVs in villous trophoblasts, but not in EC.Conclusion: Expression of hsa-miR-16-5p and hsa-miR-210 reflects maternal pathophysiological status, while hsa-miR-29b-3p reflects placental status. These findings suggest that EV-miRNA are involved in GVC, and that they may be used to distinguish between pathologies of placental and maternal origins in preeclampsia.
Severe COVID-19 infections present with cytokine storms, hypercoagulation, and acute respiratory distress syndrome, with extracellular vesicles (EVs) being involved in coagulation and inflammation. This study aimed to determine whether coagulation profiles and EVs reflect COVID-19 disease severity. Thirty-six patients with symptomatic COVID-19 infection with mild/moderate/severe disease (12 in each group) were analyzed. Sixteen healthy individuals served as controls. Coagulation profiles and EV characteristics were tested by nanoparticle tracking analysis (NTA), flow cytometry, and Western blot. While coagulation factors VII, V, VIII, and vWF were comparable, significant differences were found in patients’ D-Dimer/fibrinogen/free protein S levels compared to controls. Severe patients’ EVs displayed higher percentages of small EVs (<150 nm) with increased expression of exosome marker CD63. Severe patients’ EVs displayed high levels of platelet markers (CD41) and coagulation factors (tissue factor activity, endothelial protein C receptor). EVs of patients with moderate/severe disease expressed significantly higher levels of immune cell markers (CD4/CD8/CD14) and contained higher levels of IL-6. We demonstrated that EVs, but not the coagulation profile, may serve as biomarkers for COVID-19 severity. EVs demonstrated elevated levels of immune- and vascular-related markers in patients with moderate/severe disease, and may play a role in disease pathogenesis.
Chronic graft-versus-host disease (cGVHD) presents with dermal inflammation and fibrosis. We investigated the characteristics of extracellular vesicles (EVs) obtained from cGVHD patients, and their potential effects on human dermal fibroblast (NHDF) cells. The anti-inflammatory and anti-fibrotic effects of placental EVs were also explored given their known anti-inflammatory properties. Fourteen cGVHD patients’ EVs contained higher levels of fibrosis-related proteins, TGFβ and α-smooth muscle actin (αSMA), compared to EVs from thirteen healthy subjects. The exposure of NHDF cells to the patients’ EVs increased the NHDF cells’ TGFβ and αSMA expressions. Placental EVs derived from placental-expanded cells (PLX) (Pluri Inc.) and human villous trophoblast (HVT) cells expressing the mesenchymal markers CD29, CD73, and CD105, penetrated into both the epidermal keratinocytes (HACATs) and NHDF cells. Stimulation of the HACAT cells with cytokine TNFα/INFγ (0.01–0.1 ng/µL) reduced cell proliferation, while the addition of placental EVs attenuated this effect, increasing and normalizing cell proliferation. The treatment of NHDF cells with a combination of TGFβ and placental HVT EVs reduced the stimulatory effects of TGFβ on αSMA production by over 40% (p = 0.0286). In summary, EVs from patients with cGVHD can serve as a biomarker for the cGVHD state. Placental EVs may be used to regulate dermal inflammation and fibrosis, warranting further investigation of their therapeutic potential.
Abdominal and pelvic CT scan in women with refractory puerperal fever has a high clinical yield and lead to a change in management in a substantial number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.