Several researchers devoted their efforts for the thermal conductivity enhancement of Carbon Nanotubes (CNTs) based nanofluids as CNTs have excellent thermal properties. However, limited research is reported on the detailed thermo-physical properties of CNTs and oil based nanofluids. In this work, the one-step method synthesis of a new MWCNTs-Kapok seed oil based nanofluid at constant nanoparticle concentration (0.1 wt./wt.) is reported. The nanofluid is characterized by FESEM, FTIR, visual stability analysis and thermophysical properties are experimentally measured. The viscosity found in the range of (0.049-10.101 Pa•s), the thermal conductivity of (0.165-0.207W/m•K) and enhancement of thermal conductivity (6.1538%) were observed. Moreover, the viscosity decreases, and thermal conductivity increases with an increase in temperature. The experimentally obtained data are found in agreement with existing models and modified correlations. The rheological behavior showed that nanofluid is non-Newtonian in nature and exhibiting shear thinning or pseudo plastic behavior.
The synthesis of a nanofluid from multiwalled carbon nanotubes (MWCNTs) and Kapok seed oil by a one-step method is reported. The nanofluid showed excellent stability of nanoparticle dispersion in the base fluid. Furthermore, this study deals with the prediction of the thermal conductivity of the MWCNTs-kapok seed oil nanofluid. To improve the prediction of the thermal conductivity of the nanofluid, the artificial neural network (ANN) computing approach was used with different algorithms including the back-propagation, Levenberg-Marquardt, and genetic algorithm (GA). Finally, the ANN-GA model is recommended for the prediction of thermal conductivity with higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.