This paper reports a self-powered, flexible, piezo-and pyro-electric hybrid nanogenerator (NG) device that can be fixed on different locations of human skin for detecting static and dynamic pressure variations and can also monitor temperature fluctuations during the respiration process. An efficient and cost-effective fabrication strategy has been developed to create electrospun poly(vinylidene fluoride) (PVDF)/ graphene oxide (GO) nanofibers, which are used to create a highly sensitive wearable pressure sensor and pyroelectric breathing sensor. The sensor can accurately and rapidly detect pressures as low as 10 Pa with a high sensitivity (4.3 V/kPa), a key performance indicator for wearable sensors. Importantly, the sensor exhibits a high sensitivity to bending and stretching by finger, wrist, and elbow. The pressure sensor is also highly sensitive to vocal vibrations when attached to the human throat. The device can generate a maximum output power density of ∼6.2 mW/m 2 when subjected to a compressive stress, which enhances its range of applications. Moreover, it is demonstrated that doping with GO improves the pyroelectric energy harvesting and sensing performance of the device under repeated temperature fluctuations. The PVDF/GO-based nanogenerator has a maximum pyroelectric output power density of ∼1.2 nW/m 2 and can sense temperature changes during respiration, which makes it promising as a pyroelectric breathing sensor. It is demonstrated that processing of the PVDF-GO self-powered multifunctional pressure and pyroelectric breathing sensor can be up-scaled for fabricating compact and high-performance electronic skins for application in health monitoring, motion detection, and portable electronics.
Methylammonium lead iodide (CHNHPbI) (MAPI)-embedded β-phase comprising porous poly(vinylidene fluoride) (PVDF) composite (MPC) films turns to an excellent material for energy harvester and photodetector (PD). MAPI enables to nucleate up to ∼91% of electroactive phase in PVDF to make it suitable for piezoelectric-based mechanical energy harvesters (PEHs), sensors, and actuators. The piezoelectric energy generation from PEH made with MPC film has been demonstrated under a simple human finger touch motion. In addition, the feasibility of photosensitive properties of MPC films are manifested under the illumination of nonmonochromatic light, which also promises the application as organic photodetectors. Furthermore, fast rising time and instant increase in the current under light illumination have been observed in an MPC-based photodetector (PD), which indicates of its potential utility in efficient photoactive device. Owing to the photoresponsive and electroactive nature of MPC films, a new class of stand-alone self-powered flexible photoactive piezoelectric energy harvester (PPEH) has been fabricated. The simultaneous mechanical energy-harvesting and visible light detection capability of the PPEH is promising in piezo-phototronics technology.
A high-performance flexible piezoelectric hybrid nanogenerator (HNG) based on lead-free perovskite zinc stannate (ZnSnO3) nanocubes and polydimethylsiloxane (PDMS) composite with multiwall carbon nanotubes (MWCNTs) as supplement filling material is demonstrated. Even without any electrical poling treatment, the HNG possesses an open-circuit voltage of 40 V and a short-circuit current of 0.4 μA, respectively, under repeated human finger impact. It has been demonstrated that the output volume power density of 10.8 μW cm(-3) from a HNG can drive several colour light emitting diodes (LEDs) and a charge capacitor that powers up a calculator, indicating an effective means of energy harvesting power source with high energy conversion efficiency (∼1.17%) for portable electronic devices.
An integrated platform made with a piezoelectric nanogenerator (NG) is designed to convert daily human activities and acoustic vibration into useable electrical energy. The titanium dioxide (TiO 2 ) nanoparticles (NPs) are playing a significant role as external fillers in poly(vinylidene fluoride) (PVDF) electrospun nanofiber that improves the overall performance of the NG. It effectively enhanced the piezoelectric β-phase content (16% higher F (β)) and mechanical (148% increment of tensile strength) properties of composite PVDF nanofiber. The superior integration of NG has been demonstrated to generate electricity from a human gait. The acoustic sensitivity and energy conversion efficiency are found to be 26 V Pa −1 and 61%, respectively, which are superior in comparison to the reported results. By scavenging the mechanical energy, NG is capable of charging up a 1 μF capacitor; for example, ∼20 V is within 50 s that ensures its ability to power up commercial LED tape and a LCD screen. Thus, in this work, a high performance piezoelectric NG is presented that has potential application in the health care sector and robotics area, in particular for use as a self-powered system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.