Long-term unemployment has been discussed in academic studies as a cause for both scarring effect on young people and their future. In this context, examining differences between long-term unemployed youth and adults requires a perspective that consolidates an analysis of demographic and work-related factors; however, there are a limited number of systematic works distinguishing long-term unemployment between youth and adults. To address this gap, this study aims to present a logistic regression analysis that examines the differences between youth and adults in the relationship between long-term unemployment and demographic and work-related variables, by using the micro-data from 2016 Turkish Household Labour Force Survey. The results of the study reveal that the lack of qualifications and work experience and the desire to work in full-time jobs and in semi-skill occupations, as well as the inter-regional disparities in terms of economic development, are the main driving factors that increase the likelihood of young people becoming long-term unemployed. Also, a university or postgraduate degree does not guarantee young people protection against long-term unemployment.
Based on Labour Force Survey data conducted by Turkish Statistical Institute, this study aims at discussing economic integration of return migrants in general and determining whether there are significant differences between return migrants and non-migrants in terms of the effects of demographic factors and work-status nominators on their employment. The study argues that the returnees face far more employment challenges compared to non-migrants. The results of the study suggest that holding a university or postgraduate degree facilitates the employment of returnees to a certain degree. However, lower levels of educational attainment, employment lacking social security and micro-sized establishments pose several challenges.
International Labour Organization (ILO) and United Nations Environment Programme (UNEP) suggest that green sectors should offer decent jobs respecting to unions and international labor rights and fulfill requirements of labor laws and collective bargaining system. Also, nonunionized working in green sectors poses a significant challenge in terms of creation decent jobs. In this line, this article presents several evidences from British Labour Force Survey to find some socio-economic obstacles behind unionization in green sectors by using logistic regression modeling method. The results suggest that union membership decision in green sectors is affected by a range of demographic and work-related factors used in the study. For example, those who are 16-24 age band, women workers, those who are employed by small sized enterprises and takes charge in high-ranked occupations are higher likelihood of nonunionized working in green sectors, compared to rest of the sectors.
1970'den beri birçok gelişmiş ülkede giderek artış gösteren kısmi süreli istihdam, son zamanlarda düşük iş kalitesi ile gündeme gelmektedir. Çalışanların mutluluğuna katkıda bulunan ve doğası gereği çok boyutlu bir yapıyı temsil eden iş kalitesini ölçmek için farklı göstergeler kullanılmaktadır. Bu göstergeler arasında, örneğin OECD İş Kalitesi Çerçevesi kazanç kalitesi, işgücü piyasası güvencesi ve çalışma ortamının kalitesi olmak üzere üç temel boyutta yapılandırılmıştır. Bu açıdan, bu çalışma temel olarak, OECD ülkelerinin verilerini kullanarak, korelasyon ve çoklu doğrusal regresyon analizi yöntemleri ile kısmi süreli istihdam hacmi ile iş kalitesi göstergeleri arasındaki ilişkiyi incelemeyi amaçlamaktadır. Ampirik sonuçlar, daha yüksek kısmi süreli istihdam oranlarının, daha iyi iş kalitesiyle ilişkili olduğunu göstermektedir. Bu ilişki, kısmi süreli istihdam oranlarının gelişmiş OECD ülkelerinde daha yüksek, gelişmekte olan OECD ülkelerinde ise, daha düşük olmasının bir sonucudur. Ayrıca regresyon analizi; kazanç kalitesi, eğitim ve öğrenme ile kariyer ilerleme fırsatındaki artışın ve fiziksel sağlık risk faktörlerindeki azalmanın, kısmi süreli istihdam hacmini farklı derecelerde artırabileceğini ortaya koymaktadır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.