Software defect prediction (SDP) is the process of predicting defects in software modules, it identifies the modules that are defective and require extensive testing. Classification algorithms that help to predict software defects play a major role in software engineering process. Some studies have depicted that the use of ensembles is often more accurate than using single classifiers. However, variations exist from studies, which posited that the efficiency of learning algorithms might vary using different performance measures. This is because most studies on SDP consider the accuracy of the model or classifier above other performance metrics. This paper evaluated the performance of single classifiers (SMO, MLP, kNN and Decision Tree) and ensembles (Bagging, Boosting, Stacking and Voting) in SDP considering major performance metrics using Analytic Network Process (ANP) multi-criteria decision method. The experiment was based on 11 performance metrics over 11 software defect datasets. Boosted SMO, Voting and Stacking Ensemble methods ranked highest with a priority level of 0.0493, 0.0493 and 0.0445 respectively. Decision tree ranked highest in single classifiers with 0.0410. These clearly show that ensemble methods can give better classification results in SDP and Boosting method gave the best result. In essence, it is valid to say that before deciding which model or classifier is better for software defect prediction, all performance metrics should be considered.Keywords— Data mining, Machine Learning, Multi Criteria Decision Making, Software Defect Prediction
The increase in the usage of different mobile internet applications can cause deterioration in the mobile network performance. Such deterioration often declines the performance of the mobile network services that can influence the mobile Internet user’s experience, which can make the internet users switch between different mobile network operators to get good user experience. In this case, the success of mobile network operators primarily depends on the ability to ensure good quality of experience (QoE), which is a measure of users’ perceived quality of mobile Internet service. Traditionally, QoE is usually examined in laboratory experiments to enable a fixed contextual factor among the participants even though the results derived from these laboratory experiments presented an estimated mean opinion score representing perceived QoE. The use of user experience dataset involving time and location gathered from the mobile network traffic for modelling perceived QoE is still limited in the literature. The mobile Internet user experience dataset involving the time and location constituted in the mobile network can be used by the mobile network operators to make data-driven decisions to deal with disruptions observed in the network performance and provide an optimal solution based on the insights derived from the user experience data. Therefore, this paper proposed a framework for modelling mobile network QoE using the big data analytics approach. The proposed framework describes the process of estimating or predicting perceived QoE based on the datasets obtained or gathered from the mobile network to enable the mobile network operators effectively to manage the network performance and provide the users a satisfactory mobile Internet QoE.
The increase in the usage of different mobile internet applications can cause deterioration in the mobile network performance. Such deterioration often declines the performance of the mobile network services that can influence the mobile Internet user's experience, which can make the internet users switch between different mobile network operators to get good user experience. In this case, the success of mobile network operators primarily depends on the ability to ensure good quality of experience (QoE), which is a measure of users' perceived quality of mobile Internet service. Traditionally, QoE is usually examined in laboratory experiments to enable a fixed contextual factor among the participants even though the results derived from these laboratory experiments presented an estimated mean opinion score representing perceived QoE. The use of user experience dataset involving time and location gathered from the mobile network traffic for modelling perceived QoE is still limited in the literature. The mobile Internet user experience dataset involving the time and location constituted in the mobile network can be used by the mobile network operators to make data-driven decisions to deal with disruptions observed in the network performance and provide an optimal solution based on the insights derived from the user experience data. Therefore, this paper proposed a framework for modelling mobile network QoE using the big data analytics approach. The proposed framework describes the process of estimating or predicting perceived QoE based on the datasets obtained or gathered from the mobile network to enable the mobile network operators effectively to manage the network performance and provide the users a satisfactory mobile Internet QoE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.