This paper presents an ongoing effort to control a mobile robot in unstructured environment. Obstacle avoidance is an important task in the field of robotics, since the goal of autonomous robot is to reach the destination without collision. Several algorithms have been proposed for obstacle avoidance, having drawbacks and benefits. In this paper, the fuzzy controller is used to tackle the problem of mobile robot autonomous navigation in unstructured environment. The objective is to make the robot move along a collision free trajectory until it reaches its target. The proposed approach uses the fuzzified, adaptive inference engine and defuzzification engine. Also number of linguistic labels is optimized for the input of the mobile robot in order to reduce computational time for real-time applications. The proposed fuzzy controller is evaluated subjectively and objectively with other approaches and also the processing time is taken in consideration.
<span>Smart buildings and Fuzzy based control systems used in Buildings Management System (BMS), Building Energy Management Systems (BEMS) and Building Automation Systems (BAS) are a point of interests among researcher and stake holders of buildings’ developing sector due to its ability to save energy and reduce greenhouse gas emissions. Therefore this paper will review, investigates define and evaluates the use of fuzzy logic controllers in smart buildings under subtropical Australia’s subtropical regions. In addition the paper also will define the latest development, design and proposed controlling strategies used in institutional buildings. Furthermore this paper will highlight and discuss the conceptual basis of these technologies including Fuzzy, Neural and Hybrid add-on technologies, its capabilities and its limitation.</span>
A novel cancerous nodules detection algorithm for computed tomography images (CT-images) is presented in this paper. CT-images are large size images with high resolution. In some cases, number of cancerous lung nodule lesions may missed by the radiologist due to fatigue. A CAD system that is proposed in this paper can help the radiologist in detecting cancerous nodules in CT- images. The proposed algorithm is divided to four stages. In the first stage, an enhancement algorithm is implement to highlight the suspicious regions. Then in the second stage, the region of interest will be detected. The adaptive SVM and wavelet transform techniques are used to reduce the detected false positive regions. This algorithm is evaluated using 60 cases (normal and cancerous cases), and it shows a high sensitivity in detecting the cancerous lung nodules with TP ration 94.5% and with FP ratio 7 cluster/image.
Diagnosis the computed tomography images (CT-images) is one of the images that may take a lot of time in diagnosis by the radiologist and may miss some of cancerous nodules in these images. Therefore, in this paper a new novel enhancement and detection cancerous nodule algorithm is proposed to diagnose a CT-images. The novel algorithm is divided into three main stages. In first stage, suspicious regions are enhanced using modified LoG algorithm. Then in stage two, a potential cancerous nodule was detected based on visual appearance in lung. Finally, five texture features analysis algorithm is implemented to reduce number of detected FP regions. This algorithm is evaluated using 60 cases (normal and cancerous cases), and it shows a high sensitivity in detecting the cancerous lung nodules with TP ration 97% and with FP ratio 25 cluster/image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.