Machine learning algorithms are currently being implemented in an escalating manner to classify and/or predict the onset of some neurodegenerative diseases; including Alzheimer's Disease (AD); this could be attributed to the fact of the abundance of data and powerful computers. The objective of this work was to deliver a robust classification system for AD and Mild Cognitive Impairment (MCI) against healthy controls (HC) in a low-cost network in terms of shallow architecture and processing. In this study, the dataset included was downloaded from the Alzheimer's disease neuroimaging initiative (ADNI). The classification methodology implemented was the convolutional neural network (CNN), where the diffusion maps, and gray-matter (GM) volumes were the input images. The number of scans included was 185, 106, and 115 for HC, MCI and AD respectively. Tenfold cross-validation scheme was adopted and the stacked mean diffusivity (MD) and GM volume produced an AUC of 0.94 and 0.84, an accuracy of 93.5% and 79.6%, a sensitivity of 92.5% and 62.7%, and a specificity of 93.9% and 89% for AD/HC and MCI/HC classification respectively. This work elucidates the impact of incorporating data from different imaging modalities; i.e. structural Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI), where deep learning was employed for the aim of classification. To the best of our knowledge, this is the first study assessing the impact of having more than one scan per subject and propose the proper maneuver to confirm the robustness of the system. The results were competitive among the existing literature, which paves the way for improving medications that could slow down the progress of the AD or prevent it.
Rheumatoid arthritis (RA) is an autoimmune disease which has a significant socio-economic impact. The aim of the current study was to investigate eight candidate RA susceptibility loci to identify the associated variants in Egyptian population. Eight single nucleotide polymorphisms (SNPs) (MTHFR—C677T and A1298C, TGFβ1 T869C, TNFB A252G, and VDR—ApaI, BsmI, FokI, and TaqI) were tested by genotyping patients with RA (n = 105) and unrelated controls (n = 80). Associations were tested using multiplicative, dominant, recessive, and co-dominant models. Also, the linkage disequilibrium (LD) between the VDR SNPs was measured to detect any indirect association. By comparing RA patients with controls (TNFB, BsmI, and TaqI), SNPs were associated with RA using all models. MTHFR C677T was associated with RA using all models except the recessive model. TGFβ1 and MTHFR A1298C were associated with RA using the dominant and the co-dominant models. The recessive model represented the association for ApaI variant. There were no significant differences for FokI and the presence of RA disease by the used models examination. For LD results, There was a high D′ value between BsmI and FokI (D′ = 0.91), but the r2 value between them was poor. All the studied SNPs may contribute to the susceptibility of RA disease in Egyptian population except for FokI SNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.