The cold pressor test is often used to assess vasoconstrictive responses because it simulates the vasoconstrictive challenges commonly encountered in the clinical setting. With IRB approval, 12 healthy volunteers, aged 25--50 yr, underwent baseline plethysmographic monitoring on the finger and ear. The contralateral hand was immersed in ice water for 30 s to elicit a systemic vasoconstrictive response while the recordings were continued. The changes in plethysmographic amplitude for the first 30 s of ice water immersion (period of maximum response) of the finger and ear were compared. The data indicate a significant disparity between the finger and the ear signals in response to the cold stimulus. The average finger plethysmographic amplitude measurement decreased by 48% +/- 19%. In contrast, no significant change was seen in the ear plethysmographic amplitude measurement, which decreased by 2% +/- 10%. We conclude that the ear is relatively immune to the vasoconstrictive effects. These findings suggest that the comparison of the ear and finger pulse oximeter wave forms might be used as a real-time monitor of sympathetic tone and that the ear plethysmography may be a suitable monitor of the systemic circulation.
The data indicate that pulse width of finger and ear plethysmographic tracing are more sensitive to changes in SVR than the other indices. An appreciation of changes in pulse width may provide valuable evidence with respect to changes in peripheral vascular tone.
The cardiac pulse is the predominant feature of the pulse oximeter (plethysmographic) waveform. Less obvious is the effect of ventilation on the waveform. There have been efforts to measure the effect of ventilation on the waveform to determine respiratory rate, tidal volume, and blood volume. We measured the relative strength of the effect of ventilation on the reflective plethysmographic waveform at three different sites: the finger, ear, and forehead. The plethysmographic waveforms from 18 patients undergoing positive pressure ventilation during surgery and 10 patients spontaneously breathing during renal dialysis were collected. The respiratory signal was isolated from the waveform using spectral analysis. It was found that the respiratory signal in the pulse oximeter waveform was more than 10 times stronger in the region of the head when compared with the finger. This was true with both controlled positive pressure ventilation and spontaneous breathing. A significant correlation was demonstrated between the estimated blood loss from surgical procedures and the impact of ventilation on ear plethysmographic data (r(s) = 0.624, P = 0.006).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.