In this article, I examine the source of the photoplethysmograph (PPG), as well as methods of investigation, with an emphasize on amplitude, rhythm, and pulse analysis. The PPG waveform was first described in the 1930s. Although considered an interesting ancillary monitor, the "pulse waveform" never underwent intensive investigation. Its importance in clinical medicine was greatly increased with the introduction of the pulse oximeter into routine clinical care in the 1980s. Its waveform is now commonly displayed in the clinical setting. Active research efforts are beginning to demonstrate a utility beyond oxygen saturation and heart rate determination. Future trends are being heavily influenced by modern digital signal processing, which is allowing a re-examination of this ubiquitous waveform. Key to unlocking the potential of this waveform is an unfettered access to the raw signal, combined with standardization of its presentation, and methods of analysis. In the long run, we need to learn how to consistently quantify the characteristics of the PPG in such a way as to allow the results from research efforts be translated into clinically useful devices.
Heart rate variability (HRV), extracted from an electrocardiogram, is known to be a noninvasive indicator reflecting the dynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory system. Photoplethysmography (PPG) is a noninvasive method to monitor arterial oxygen saturation on a continuous basis. Given the rich cardiovascular information in the PPG signal, and the ubiquity and simplicity of pulse oximetry, we are investigating the feasibility of acquiring dynamics pertaining to the autonomic nervous system from PPG waveforms. To do this, we are quantifying PPG variability (PPGV). Detailed algorithmic approaches for extracting accurate PPGV signals are presented. We compare PPGV to HRV by computing time and frequency domain parameters often associated with HRV measurements, as well as approximate entropy calculations. Our results demonstrate that the parameters of PPGV are highly correlated with the parameters of HRV. Thus, our results indicate that PPGV could be used as an alternative measurement of HRV.
The photoplethysmographic (PPG) waveform, also known as the pulse oximeter waveform, is one of the most commonly displayed clinical waveforms. First described in the 1930s, the technology behind the waveform is simple. The waveform, as displayed on the modern pulse oximeter, is an amplified and highly filtered measurement of light absorption by the local tissue over time. It is optimized by medical device manufacturers to accentuate its pulsatile components. Physiologically, it is the result of a complex, and not well understood, interaction between the cardiovascular, respiratory, and autonomic systems. All modern pulse oximeters extract and display the heart rate and oxygen saturation derived from the PPG measurements at multiple wavelengths. "As is," the PPG is an excellent monitor for cardiac arrhythmia, particularly when used in conjunction with the electrocardiogram (ECG). With slight modifications in the display of the PPG (either to a strip chart recorder or slowed down on the monitor screen), the PPG can be used to measure the ventilator-induced modulations which have been associated with hypovolemia. Research efforts are under way to analyze the PPG using improved digital signal processing methods to develop new physiologic parameters. It is hoped that when these new physiologic parameters are combined with a more modern understanding of cardiovascular physiology (functional hemodynamics) the potential utility of the PPG will be expanded. The clinical researcher's objective is the use of the PPG to guide early goal-directed therapeutic interventions (fluid, vasopressors, and inotropes), in effect to extract from the simple PPG the information and therapeutic guidance that was previously only obtainable from an arterial pressure line and the pulmonary artery catheter.
The cold pressor test is often used to assess vasoconstrictive responses because it simulates the vasoconstrictive challenges commonly encountered in the clinical setting. With IRB approval, 12 healthy volunteers, aged 25--50 yr, underwent baseline plethysmographic monitoring on the finger and ear. The contralateral hand was immersed in ice water for 30 s to elicit a systemic vasoconstrictive response while the recordings were continued. The changes in plethysmographic amplitude for the first 30 s of ice water immersion (period of maximum response) of the finger and ear were compared. The data indicate a significant disparity between the finger and the ear signals in response to the cold stimulus. The average finger plethysmographic amplitude measurement decreased by 48% +/- 19%. In contrast, no significant change was seen in the ear plethysmographic amplitude measurement, which decreased by 2% +/- 10%. We conclude that the ear is relatively immune to the vasoconstrictive effects. These findings suggest that the comparison of the ear and finger pulse oximeter wave forms might be used as a real-time monitor of sympathetic tone and that the ear plethysmography may be a suitable monitor of the systemic circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.