[1] The Ganos fault is the westernmost segment of the North Anatolian Fault that experienced the Mw = 7.4 earthquake of 9 August 1912. The earthquake revealed 45-km-long of surface ruptures inland, trending N70 E, and 5.5 m of maximum right lateral offset near Güzelköy. The long-term deformation of the fault is clearly expressed by several pull-apart basins and sag ponds, pressure and shutter ridges and offset streams. In parallel with detailed geomorphologic investigations, we measured co-seismic and cumulative displacements along the fault, and selected the Güzelköy site for paleoseismology. A microtopographic survey at the site yields 10.5 AE 0.5 m and 35.4 AE 1.5 m cumulative lateral offsets of stream channels and geomorphologic features. Seven paleoseismic parallel and cross-fault trenches document successive faulting events and provide the timing of past earthquakes on the Ganos fault segment. Radiocarbon dating of successive colluvial wedges in trench T1, and the fresh scarplet above (probably 1912 surface rupture)Copyright 2012 by the American Geophysical Union 1 of 26 indicate the occurrence of three faulting events since the 14th century. Parallel trenches (3, 5, 6 and 7) expose paleo-channels and show a cumulative right-lateral offset of 16.5 AE 1.5 m next to the fault, and 21.3 AE 1.5 m total channel deflection. Radiocarbon dating of past channel units and fault scarp-related colluvial deposits imply an average 17 +/À 5 mm/year slip rate and 323 AE 142 years recurrence interval of large earthquakes during the last 1000 years on the Ganos fault. The succession of past faulting events and inferred slip rate west of the Marmara Sea provide more constraint on the long-term faulting behavior in the seismic gap of the North Anatolian Fault and may contribute to a better seismic hazard assessment in the Istanbul region.
Evidence of right‐lateral offsets associated with the 1912 earthquake (Mw 7.4) along the North Anatolian Fault (Gaziköy–Saros segment) allow us to survey (using DGPS) the co‐seismic and cumulative slip distribution. The damage distribution and surface breaks related with the earthquake show an elongated zone of maximum intensity (X MSK) parallel to the fault rupture on land but this may extend offshore to the north‐east and south‐west. Detailed mapping of the fault using topographic maps and aerial photographs indicates the existence of pull‐apart basins and pressure ridges. At several localities, the average 1912 offset along strike is 3.5–4 m and cumulative slip is 2–6 times that of individual movement. The fault rupture geometry and slip distribution suggest the existence of three subsegments with a combined total length of 110–120 km, a fault length and maximum slip similar to those of the 1999 Izmit earthquake. The amount of slip at the north‐easternmost section and in the coastal region of the Sea of Marmara reaches an average 4 m, thereby implying the offshore extension of the 1912 rupture. The results suggest that the 1912 event generated up to 150 km of surface faulting, which would imply a Mw 7.2–7.4 earthquake and which, added with rupture lengths of the 1999 earthquakes, help to constrain the remaining seismic gap in the Sea of Marmara.
On 17 August 1999 the M w 7.5 İzmit, Turkey, earthquake produced surface rupture in excess of 120 km, and perhaps as much as 200 km, with up to 5 m of dextral slip, along a western portion of the North Anatolian fault zone. The 12 November 1999 M w 7.1 Düzce, Turkey, earthquake produced a 40-km-long surface rupture, including 9 km of rupture overlap with the eastern end of the August event. Our mapping focused on the 40-km-long Karadere rupture segment, the easternmost segment of the August event, as well as on the western 20 km of the November rupture. Maximum dextral slip along the Karadere segment is approximately 1.5 m, and the average slip on this segment is close to 1 m. Although slip along the Karadere segment is considerably less than that on segments to the west, this segment is of particular interest for three reasons: (1) the western boundary of the Karadere segment is defined by the most striking structural discontinuity along the entire August surface rupture (i.e., a 5-km-wide zone of no surface rupture, as well as a 25Њ change in trend from E-W to ENE), and such a discontinuity may have important implications for rupture dynamics; (2) surface rupture terminates at the east end of the Karadere rupture segment at a 1.5-to 3-km-wide extensional step-over at Eften Lake; and (3) the 12 November 1999 Düzce earthquake reruptured the easternmost 9 km of the Karadere segment, raising interesting questions about rupture dynamics and interactions between events on adjacent fault segments. The details of the 17 August 1999 and l2 November 1999 surface rupture traces suggest that rupture may have partially propagated across the Eften Lake extensional step-over, although this step-over seems to have acted as an effective barrier to rupture propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.