Brain signals are often analyzed in the spectral domain, where the power spectral density (PSD) and phase differences and consistency can reveal important information about the network. However, for proper interpretation, it is important to know whether these measures depend on stimulus/behavioral conditions or the reference scheme used to analyze data. We recorded local field potential (LFP) from an array of microelectrodes chronically implanted in area V1 of monkeys under different stimulus/behavioral conditions and computed PSD slopes, coherence, and phase difference between LFPs as a function of frequency and interelectrode distance while using four reference schemes: single wire, average, bipolar, and current source density. PSD slopes were dependent on reference scheme at low frequencies (below 200 Hz) but became invariant at higher frequencies. Average phase differences between sites also depended critically on referencing, switching from 0 degrees for single-wire to 180 degrees for average reference. Results were consistent across different stimulus/behavioral conditions. We were able to account for these results based on the coherence profile across sites and properties of the spectral estimator. Our results show that using different reference schemes can have drastic effects on phase differences and PSD slopes and therefore must be interpreted carefully to gain insights about network properties.
We have developed a spiking neural network (SNN) algorithm for signal restoration and identification based on principles extracted from the mammalian olfactory system and broadly applicable to input from arbitrary sensor arrays. For interpretability and development purposes, we here examine the properties of its initial feedforward projection. Like the full algorithm, this feedforward component is fully spike timing-based, and utilizes online learning based on local synaptic rules such as spike timing-dependent plasticity (STDP). Using an intermediate metric to assess the properties of this initial projection, the feedforward network exhibits high classification performance after few-shot learning without catastrophic forgetting, and includes a none of the above outcome to reflect classifier confidence. We demonstrate online learning performance using a publicly available machine olfaction dataset with challenges including relatively small training sets, variable stimulus concentrations, and 3 years of sensor drift.
We describe an integrated theory of olfactory systems operation that incorporates experimental findings across scales, stages, and methods of analysis into a common framework. In particular, we consider the multiple stages of olfactory signal processing as a collective system, in which each stage samples selectively from its antecedents. We propose that, following the signal conditioning operations of the nasal epithelium and glomerular-layer circuitry, the plastic external plexiform layer of the olfactory bulb effects a process of category learning-the basis for extracting meaningful, quasi-discrete odor representations from the metric space of undifferentiated olfactory quality. Moreover, this early categorization process also resolves the foundational problem of how odors of interest can be recognized in the presence of strong competitive interference from simultaneously encountered background odorants. This problem is fundamentally constraining on early-stage olfactory encoding strategies and must be resolved if these strategies and their underlying mechanisms are to be understood. Multiscale general theories of olfactory systems operation are essential in order to leverage the analytical advantages of engineered approaches together with our expanding capacity to interrogate biological systems.
The mammalian olfactory system learns rapidly from very few examples, presented in unpredictable online sequences, and then recognizes these learned odors under conditions of substantial interference without exhibiting catastrophic forgetting. We have developed a brain-mimetic algorithm that replicates these properties, provided that sensory inputs adhere to a common statistical structure. However, in natural, unregulated environments, this constraint cannot be assured. We here present a series of signal conditioning steps, inspired by the mammalian olfactory system, that transform diverse sensory inputs into a regularized statistical structure to which the learning network can be tuned. This preprocessing enables a single instantiated network to be applied to widely diverse classification tasks and datasets -here including gas sensor data, remote sensing from spectral characteristics, and multilabel hierarchical identification of wild species -without adjusting network hyperparameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.