The gut microbiome plays a central role in inflammatory bowel diseases (IBD) pathogenesis and propagation. To determine if the gut microbiome may predict responses to IBD therapy, we conducted a prospective study with Crohn’s disease (CD) or ulcerative colitis (UC) patients initiating anti-integrin therapy (vedolizumab). Disease activity and stool metagenomes at baseline, and weeks 14, 30, and 54 after therapy initiation were assessed. Community α-diversity was significantly higher, and Roseburia inulinivorans and a Burkholderiales species were more abundant at baseline among CD patients achieving week 14 remission. Several significant associations were identified with microbial function; 13 pathways including branched chain amino acid synthesis were significantly enriched in baseline samples from CD patients achieving remission. A neural network algorithm, vedoNet, incorporating microbiome and clinical data, and provided highest classifying power for clinical remission. We hypothesize that the trajectory of early microbiome changes may be a marker of response to IBD treatment.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In the Von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018 calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this Roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The Roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this Roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community.
BackgroundAlzheimer’s disease (AD) is a progressive neurodegenerative disease associated with cognitive decline and complete loss of basic functions. The ubiquitous apicomplexan parasite Toxoplasma gondii (T. gondii) infects up to one third of the world’s population and is implicated in AD.MethodsWe infected C57BL/6 wild-type male and female mice with 10 T. gondii ME49 cysts and assessed whether infection led to behavioral and anatomical effects using immunohistochemistry, immunofluorescence, Western blotting, cell culture assays, as well as an array of mouse behavior tests.ResultsWe show that T. gondii infection induced two major hallmarks of AD in the brains of C57BL/6 male and female mice: beta-amyloid (Aβ) immunoreactivity and hyperphosphorylated Tau. Infected mice showed significant neuronal death, loss of N-methyl-d-aspartate receptor (NMDAR) expression, and loss of olfactory sensory neurons. T. gondii infection also caused anxiety-like behavior, altered recognition of social novelty, altered spatial memory, and reduced olfactory sensitivity. This last finding was exclusive to male mice, as infected females showed intact olfactory sensitivity.ConclusionsThese results demonstrate that T. gondii can induce advanced signs of AD in wild-type mice and that it may induce AD in some individuals with underlying health problems.Electronic supplementary materialThe online version of this article (10.1186/s12974-018-1086-8) contains supplementary material, which is available to authorized users.
The gut microbiome plays a central role in inflammatory bowel diseases (IBD) pathogenesis and propagation. To determine if the gut microbiome may predict responses to IBD therapy, we conducted a prospective study with Crohn's disease (CD) or ulcerative colitis (UC) patients initiating anti-integrin therapy (vedolizumab). Disease activity and stool metagenomes at baseline, and weeks 14, 30, and 54 after therapy initiation were assessed. Community α-diversity was significantly higher, and Roseburia inulinivorans and a Burkholderiales species were more abundant at baseline among CD patients achieving week 14 remission. Several significant associations were identified with microbial function; 13 pathways including branched chain amino acid synthesis were significantly enriched in baseline samples from CD patients achieving remission. A neural network algorithm, vedoNet, incorporating microbiome and clinical data, and provided highest classifying power for clinical remission. We hypothesize that the trajectory of early microbiome changes may be a marker of response to IBD treatment.
Advances in experimental techniques and computational power allowing researchers to gather anatomical and electrophysiological data at unprecedented levels of detail have fostered the development of increasingly complex models in computational neuroscience. Large-scale, biophysically detailed cell models pose a particular set of computational challenges, and this has led to the development of a number of domain-specific simulators. At the other level of detail, the ever growing variety of point neuron models increases the implementation barrier even for those based on the relatively simple integrate-and-fire neuron model. Independently of the model complexity, all modeling methods crucially depend on an efficient and accurate transformation of mathematical model descriptions into efficiently executable code. Neuroscientists usually publish model descriptions in terms of the mathematical equations underlying them. However, actually simulating them requires they be translated into code. This can cause problems because errors may be introduced if this process is carried out by hand, and code written by neuroscientists may not be very computationally efficient. Furthermore, the translated code might be generated for different hardware platforms, operating system variants or even written in different languages and thus cannot easily be combined or even compared. Two main approaches to addressing this issues have been followed. The first is to limit users to a fixed set of optimized models, which limits flexibility. The second is to allow model definitions in a high level interpreted language, although this may limit performance. Recently, a third approach has become increasingly popular: using code generation to automatically translate high level descriptions into efficient low level code to combine the best of previous approaches. This approach also greatly enriches efforts to standardize simulator-independent model description languages. In the past few years, a number of code generation pipelines have been developed in the computational neuroscience community, which differ considerably in aim, scope and functionality. This article provides an overview of existing pipelines currently used within the community and contrasts their capabilities and the technologies and concepts behind them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.