BACKGROUND
Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis.
METHODS
We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations.
RESULTS
Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P = 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, and another carried identical KRAS c.35G→A mutations in three distinct lesions.
CONCLUSIONS
We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions.
SUMMARY
Resistance to chemotherapy represents a major obstacle for long-term remission and effective strategies to overcome drug resistance would have significant clinical impact. We report here that after paclitaxel/carboplatin treatment, ovarian carcinomas have upregulated spleen tyrosine kinase (SYK) and phospho-SYK. In vitro, paclitaxel-resistant cells expressed higher SYK, and the ratio of phospho-SYK/SYK positively associated with paclitaxel resistance in ovarian cancer cells. Inactivation of SYK by inhibitors or gene knockdown sensitized paclitaxel cytotoxicity in vitro and in vivo. Analysis of the phosphotyrosine proteome in paclitaxel-resistant tumor cells revealed that SYK phosphorylates tubulins and microtubule-associated proteins. Inhibition of SYK enhanced microtubule stability in paclitaxel resistant tumor cells that were otherwise insensitive. Thus, targeting SYK pathway is a promising strategy to enhance paclitaxel response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.